㈠ 程序開發中json 存儲結構化數據是怎麼回事呢
使用 json 存儲結構化數據就是從文件中讀寫字元串很容易。
1.數值就要多費點兒周折,因為 read() 方法只會返回字元串,應將其傳入 int() 這樣的函數,就可以將 '123' 這樣的字元串轉換為對應的數值 123。當你想要保存更為復雜的數據類型,例如嵌套的列表和字典,手工解析和序列化它們將變得更復雜。
好在用戶不是非得自己編寫和調試保存復雜數據類型的代碼,Python 允許你使用常用的數據交換格式 JSON(JavaScript Object Notation)。標准模塊 json 可以接受 Python 數據結構,並將它們轉換為字元串表示形式;此過程稱為 序列化。從字元串表示形式重新構建數據結構稱為 反序列化。序列化和反序列化的過程中,表示該對象的字元串可以存儲在文件或數據中,也可以通過網路連接傳送給遠程的機器。
Note
2.JSON 格式經常用於現代應用程序中進行數據交換。許多程序員都已經熟悉它了,使它成為相互協作的一個不錯的選擇。
如果你有一個對象 x,你可以用簡單的一行代碼查看其 JSON 字元串表示形式:
>>> json.mps([1, 'simple', 'list'])
'[1, "simple", "list"]'
mps() 函數的另外一個變體 mp(),直接將對象序列化到一個文件。所以如果 f 是為寫入而打開的一個 文件對象,我們可以這樣做:
json.mp(x, f)
為了重新解碼對象,如果 f 是為讀取而打開的 文件對象:
x = json.load(f)
3.這種簡單的序列化技術可以處理列表和字典,但序列化任意類實例為 JSON 需要一點額外的努力。 json 模塊的手冊對此有詳細的解釋。
See also
pickle - pickle 模塊
4.與 JSON 不同,pickle 是一個協議,它允許任意復雜的 Python 對象的序列化。因此,它只能用於 Python 而不能用來與其他語言編寫的應用程序進行通信。默認情況下它也是不安全的:如果數據由熟練的攻擊者精心設計, 反序列化來自一個不受信任源的 pickle 數據可以執行任意代碼。
㈡ 將非結構化數據轉化為結構化數據有哪些方法
非結構化數據轉化為結構化數據有以下幾個方法:
1. 傳統方法——樹
雖然絕大多數數據是非結構化格式的,但是結構化數據普遍存在於各類商業應用軟體和系統中,例如產品數據存儲,交易日誌,ERP和CRM 系統中都存在大量結構化數據,這些結構化數據仍應用著陳舊的數據技術處理,如基於規則的系統,決策樹等。這樣的方法需要人工進行特徵提取,操作繁瑣且需要耗費大量人力進行數據標簽。
非結構化數據,也就是通常使用的雜亂無章的文本數據。非結構化數據通常是不能用結構化數據的常規方法以傳統方式進行分析或處理的,所以這也成為AI領域一個常見的難題,要理解非結構化數據通常需要輸入整段文字,以識別其潛在的特徵,然後查看這些特徵是否出現在池中的其他文本中。因此,在處理此類任務時,深度學習以其出色的特徵提取能力一騎絕塵,於是所有人都開始想著把神經網路用在結構化數據上——建個全連接層,把每一列的內容作為輸入,再有一個確定好的標簽,就可以進行訓練和推理了。
2. 新型利器——深度學習
需要尋找結構化數據的語義,目前要解決的問題主要有:
①數據清洗。要在結構化數據 AI 應用上有所成果,首先需要解決人工數據清洗和准備的問題,找到極少或者沒有人為干預的自動化方法,才能使得這一應用可落地可拓展。
②異構數據。處理結構化數據的其中一大挑戰在於,結構化數據可能是異構的,同時組合了不同類型的數據結構,例如文本數據、定類數據、數字甚至圖像數據。其次,數據表有可能非常稀疏。想像一個 100 列的表格,每列都有 10 到 1000 個可能值(例如製造商的類型,大小,價格等),行則有幾百萬行。由於只有一小部分列值的組合有意義,可以想像,這個表格可能的組合空間有多麼「空」。
③語義理解。找到這些結構化數據的語義特徵。處理結構化數據並不僅僅依賴於數據本身的特徵 (稀疏,異構,豐富的語義和領域知識),數據表集合 (列名,欄位類型,域和各種完整性約束等)可以解碼各數據塊之間的語義和可能存在的交互的重要信息。也就是說,存儲在資料庫表中的信息具有強大的底層結構,而現有的語言模型(例如 BERT)僅受過訓練以編碼自由格式的文本。
3. 結構化數據清洗
除了某些特定的需求外,經過預處理之後的結構化數據,應該滿足以下特點:
①所有值都是數字–機器學習演算法取決於所有數據都是數字;
②非數字值(在類別或文本列中的內容)需要替換為數字標識符;
③標識並清除具有無效值的記錄;
④識別並消除了無關的類別;
⑤所有記錄都需要使用相同的一致類別。
㈢ 如何把文本變成結構化數據
頁面解析和數據提取
一般來講對我們而言,需要抓取的是某個網站或者某個應用的內容,提取有用的價值。內容一般分為兩部分,非結構化的數據
和
結構化的數據。
非結構化數據:先有數據,再有結構,
結構化數據:先有結構、再有數據
不同類型的數據,我們需要採用不同的方式來處理。
㈣ 如何將文本結構化並提取數據
頁面解析和數據提取
一般來講對我們而言,需要抓取的是某個網站或者某個應用的內容,提取有用的價值。內容一般分為兩部分,非結構化的數據 和 結構化的數據。
非結構化數據:先有數據,再有結構,
結構化數據:先有結構、再有數據
不同類型的數據,我們需要採用不同的方式來處理。
㈤ 你所了解的針對結構化數據的傳統數據處理方法有哪些
1、聚類分析(cluster analysis)
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。
2、因子分析(factor analysis)
因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。
因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。這些方法本質上大都屬近似方法,是以相關系數矩陣為基礎的,所不同的是相關系數矩陣對角線上的值,採用不同的共同性□2估值。在社會學研究中,因子分析常採用以主成分分析為基礎的反覆法。
3、相關分析(correlation analysis)
相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系,例如,以x和y分別記一個人的身高和體重,或分別記每公頃施肥量與每公頃小麥產量,則x與y顯然有關系,而又沒有確切到可由其中的一個去精確地決定另一個的程度,這就是相關關系。
4、對應分析(correspondence analysis)
對應分析(correspondence analysis)也稱關聯分析、r-q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變數y對另一個(x)或一組(x1,x2,…,xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
6、方差分析(anova/analysis of variance)
又稱「變異數分析」或「f檢驗」,是r.a.fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。這個 還需要具體問題具體分析
㈥ 如何將非結構化數據轉化結構化數據
在信息社會,信息可以劃分為兩大類.一類信息能夠用數據或統一的結構加以表示,我們稱之為結構化數據,如數字、符號;而另一類信息無法用數字或統一的結構表示,如文本、圖像、聲音、網頁等,我們稱之為非結構化數據.結構化數據屬於非結構化數據,是非結構化數據的特例.
隨著網路技術的發展,特別是Internet和Intranet技術的飛快發展,使得非結構化數據的數量日趨增大.這時,主要用於管理結構化數據的關系資料庫的局限性暴露地越來越明顯.因而,資料庫技術相應地進入了「後關系資料庫時代」,發展進入基於網路應用的非結構化資料庫時代.所謂非結構化資料庫,是指資料庫的變長紀錄由若干不可重復和可重復的欄位組成,而每個欄位又可由若干不可重復和可重復的子欄位組成.簡單地說,非結構化資料庫就是欄位可變的資料庫.
㈦ 結構化數據和非結構化數據分別是什麼數據清洗是什麼
(1)結構化數據,簡單來說就是資料庫。結合到典型場景中更容易理解,比如企業ERP、財務系統;醫療HIS資料庫;教育一卡通;政府行政審批;其他核心資料庫等。這些應用需要哪些存儲方案呢?基本包括高速存儲應用需求、數據備份需求、數據共享需求以及數據容災需求。
(2)非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖象、聲音、影視、超媒體等信息)。
(3)數據清洗是指發現並糾正數據文件中可識別的錯誤的最後一道程序,包括檢查數據一致性,處理無效值和缺失值等。與問卷審核不同,錄入後的數據清理一般是由計算機而不是人工完成。
㈧ 請教:關於結構化和非結構化數據存儲
(1)結構化數據,簡單來說就是資料庫。結合到典型場景中更容易理解,比如企業ERP、財務系統;醫療HIS資料庫;政府行政審批;其他核心資料庫等。這些應用需要哪些存儲方案呢?基本包括高速存儲應用需求、數據備份需求、數據共享需求以及數據容災需求。
(2)非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖像、聲音、影視、超媒體等信息)。
面對海量非結構數據存儲,杉岩海量對象存儲MOS,提供完整解決方案,採用去中心化、分布式技術架構,支持百億級文件及EB級容量存儲,具備高效的數據檢索、智能化標簽和分析能力,輕松應對大數據和雲時代的存儲挑戰,為企業發展提供智能決策。
㈨ 如何將非結構化數據轉化為結構化數據
隨著機器學習的發展,過去傳統的結構化數據分析方法已經不能滿足我們的需求了。如何在神經網路中利用非結構化數據是很重要的一點。所以很多研究者致力於將非結構化數據處理成結構化數據的工具開發。將非結構化數據轉化為結構化數據有以下幾個方法:
1. 傳統方法——樹
雖然絕大多數數據是非結構化格式的,但是結構化數據普遍存在於各類商業應用軟體和系統中,例如產品數據存儲,交易日誌,ERP和CRM 系統中都存在大量結構化數據,這些結構化數據仍應用著陳舊的數據技術處理,如基於規則的系統,決策樹等。這樣的方法需要人工進行特徵提取,操作繁瑣且需要耗費大量人力進行數據標簽。
非結構化數據,也就是通常使用的雜亂無章的文本數據。非結構化數據通常是不能用結構化數據的常規方法以傳統方式進行分析或處理的,所以這也成為AI領域一個常見的難題,要理解非結構化數據通常需要輸入整段文字,以識別其潛在的特徵,然後查看這些特徵是否出現在池中的其他文本中。因此,在處理此類任務時,深度學習以其出色的特徵提取能力一騎絕塵,於是所有人都開始想著把神經網路用在結構化數據上——建個全連接層,把每一列的內容作為輸入,再有一個確定好的標簽,就可以進行訓練和推理了。
2. 新型利器——深度學習
需要尋找結構化數據的語義,目前要解決的問題主要有:
①數據清洗。要在結構化數據 AI 應用上有所成果,首先需要解決人工數據清洗和准備的問題,找到極少或者沒有人為干預的自動化方法,才能使得這一應用可落地可拓展。
②異構數據。處理結構化數據的其中一大挑戰在於,結構化數據可能是異構的,同時組合了不同類型的數據結構,例如文本數據、定類數據、數字甚至圖像數據。其次,數據表有可能非常稀疏。想像一個 100 列的表格,每列都有 10 到 1000 個可能值(例如製造商的類型,大小,價格等),行則有幾百萬行。由於只有一小部分列值的組合有意義,可以想像,這個表格可能的組合空間有多麼「空」。
③語義理解。找到這些結構化數據的語義特徵。處理結構化數據並不僅僅依賴於數據本身的特徵 (稀疏,異構,豐富的語義和領域知識),數據表集合 (列名,欄位類型,域和各種完整性約束等)可以解碼各數據塊之間的語義和可能存在的交互的重要信息。也就是說,存儲在資料庫表中的信息具有強大的底層結構,而現有的語言模型(例如 BERT)僅受過訓練以編碼自由格式的文本。
3. 結構化數據清洗
除了某些特定的需求外,經過預處理之後的結構化數據,應該滿足以下特點:
①所有值都是數字–機器學習演算法取決於所有數據都是數字;
②非數字值(在類別或文本列中的內容)需要替換為數字標識符;
③標識並清除具有無效值的記錄;
④識別並消除了無關的類別;
⑤所有記錄都需要使用相同的一致類別。
㈩ 什麼是結構化數據非結構化數據半結構化數據
1、結構化數據
結構化數據,簡單來說就是資料庫。結合到典型場景中更容易理解,比如企業ERP、財務系統;醫療HIS資料庫;教育一卡通;政府行政審批;其他核心資料庫等。
基本包括高速存儲應用需求、數據備份需求、數據共享需求以及數據容災需求。
2、非結構化數據
非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片、XML, HTML、各類報表、圖像和音頻/視頻信息等等。
3、半結構化數據
和普通純文本相比,半結構化數據具有一定的結構性,OEM(Object exchange Model)是一種典型的半結構化數據模型。
半結構化數據(semi-structured data)。在做一個信息系統設計時肯定會涉及到數據的存儲,一般我們都會將系統信息保存在某個指定的關系資料庫中。我們會將數據按業務分類,並設計相應的表,然後將對應的信息保存到相應的表中。
數據:
數據是指對客觀事件進行記錄並可以鑒別的符號,是對客觀事物的性質、狀態以及相互關系等進行記載的物理符號或這些物理符號的組合。它是可識別的、抽象的符號。
它不僅指狹義上的數字,還可以是具有一定意義的文字、字母、數字元號的組合、圖形、圖像、視頻、音頻等,也是客觀事物的屬性、數量、位置及其相互關系的抽象表示。例如,「0、1、2…」、「陰、雨、下降、氣溫」、「學生的檔案記錄、貨物的運輸情況」等都是數據。數據經過加工後就成為信息。
在計算機科學中,數據是所有能輸入計算機並被計算機程序處理的符號的介質的總稱,是用於輸入電子計算機進行處理,具有一定意義的數字、字母、符號和模擬量等的通稱。計算機存儲和處理的對象十分廣泛,表示這些對象的數據也隨之變得越來越復雜。