1. 常見的快速成型工藝有哪些
快速成型是上世紀80年代末及90年代初發展起來的高新製造技術,是由三維CAD模型直接驅動的快速製造任意復雜形狀三維實體的總稱。由於它把復雜的三維製造轉化為一系列二維製造的疊加,因而可以在不用模具和工具的條件下生成幾乎任意復雜的零部件,極大地提高了生產效率和製造柔性。
常見的快速成型工藝有:立體光固化成型法、選擇性激光燒結法、熔融沉積成型法、分層實體製造法、三維印刷法。
常用快速成型基本方法簡介
2. 簡述快速成型的原理
計算機控制下,基於離散、堆積的原理採用不同方法堆積材料,最終完成零件的成形與製造。
從成形角度看,零件可視為「點」或「面」的疊加。從CAD電子模型中離散得到「點」或「面」的幾何信息,再與成形工藝參數信息結合,控制材料有規律、精確地由點到面,由面到體地堆積零件。
從製造角度看,它根據CAD造型生成零件三維幾何信息,控制多維系統,通過激光束或其他方法將材料逐層堆積而形成原型或零件。
快速成形技術特點:
1、成型全過程的快速性,適合現代激烈的產品市場;
2、可以製造任意復雜形狀的三維實體;
3、用CAD模型直接驅動,實現設計與製造高度一體化,其直觀性和易改性為產品的完美設計提供了優良的設計環境;
4、成型過程無需專用夾具、模具、刀具,既節省了費用,又縮短了製作周期。
5、技術的高度集成性,既是現代科學技術發展的必然產物,也是對它們的綜合應用,帶有鮮明的高新技術 特徵。
以上內容參考 網路-快速成形技術;網路-快速成型
3. 金屬材料的快速成型技術
快速成型的工藝過程具體如下:
l)產品三維模型的構建。由於 RP 系統是由三維 CAD 模型直接驅動,因此首先要構建所加工工件的三維CAD 模型。該三維CAD模型可以利用計算機輔助設計軟體(如Pro/E,I-DEAS,Solid Works,UG 等)直接構建,也可以將已有產品的二維圖樣進行轉換而形成三維模型,或對產品實體進行激光掃描、 CT 斷層掃描,得到點雲數據,然後利用反求工程的方法來構造三維模型。
2)三維模型的近似處理。由於產品往往有一些不規則的自由曲面,加工前要對模型進行近似處理,以方便後續的數據處理工作。由於STL格式文件格式簡單、實用,目前已經成為快速成型領域的准標准介面文件。它是用一系列的小三角形平面來逼近原來的模型,每個小三角形用 3 個頂點坐標和一個法向量來描述,三角形的大小可以根據精度要求進行選擇。STL 文件有二進制碼和 ASCll 碼兩種輸出形式,二進制碼輸出形式所佔的空間比 ASCⅡ 碼輸出形式的文件所佔用的空間小得多,但ASCⅡ碼輸出形式可以閱讀和檢查。典型的CAD 軟體都帶有轉換和輸出 STL 格式文件的功能。
3)三維模型的切片處理。根據被加工模型的特徵選擇合適的加工方向,在成型高度方向上用一系列一定間隔的平面切割近似後的模型,以便提取截面的輪廓信息。間隔一般取0.05mm~0.5mm, 常用 0.1mm。間隔越小,成型精度越高,但成型時間也越長,效率就越低,反之則精度低,但效率高。
4)成型加工。根據切片處理的截面輪廓,在計算機控制下,相應的成型頭(激光頭或噴頭)按各截面輪廓信息做掃描運動,在工作台上一層一層地堆積材料,然後將各層相粘結,最終得到原型產品。
5)成型零件的後處理。從成型系統里取出成型件,進行打磨、拋光、塗掛,或放在高溫爐中進行後燒結,進一步提高其強度。 快速成型特術具有以下幾個重要特徵:
l)可以製造任意復雜的三維幾何實體。由於採用離散/堆積成型的原理.它將一個十分復雜的三維製造過程簡化為二維過程的疊加,可實現對任意復雜形狀零件的加工。越是復雜的零件越能顯示出 RP 技術的優越性此外, RP 技術特別適合於復雜型腔、復雜型面等傳統方法難以製造甚至無法製造的零件。
2)快速性。通過對一個 CAD 模型的修改或重組就可獲得一個新零件的設計和加工信息。從幾個小時到幾十個小時就可製造出零件,具有快速製造的突出特點。
3)高度柔性。無需任何專用夾具或工具即可完成復雜的製造過程,快速製造工模具、原型或零件
4)快速成型技術實現了機械工程學科多年來追求的兩大先進目標.即材料的提取(氣、液固相)過程與製造過程一體化和設計(CAD)與製造(CAM)一體化
5)與反求工程(Reverse Engineering)、CAD 技術、網路技術、虛擬現實等相結合,成為產品決速開發的有力工具。
因此,快速成型技術在製造領域中起著越來越重要的作用,並將對製造業產生重要影響。 快速成型技術的分類:
快速成型技術根據成型方法可分為兩類:基於激光及其他光源的成型技術(Laser Technology),例如:光固化成型(SLA)、分層實體製造(LOM)、選域激光粉末燒結(SLS)、形狀沉積成型(SDM)等;基於噴射的成型技術(Jetting Technoloy),例如:熔融沉積成型(FDM)、三維印刷(3DP)、多相噴射沉積(MJD)。下面對其中比較成熟的工藝作簡單的介紹。
1、SLA(Stereolithogrphy Apparatus)工藝 SLA 工藝也稱光造型或立體光刻,由Charles Hul 於 1984 年獲美國專利。1988 年美國 3D System公司推出商品化樣機SLA-I,這是世界上第一台快速成型機。SLA 各型成型機機占據著 RP 設備市場的較大份額。SLA 技術是基於液態光敏樹脂的光聚合原理工作的。這種液態材料在一定波長和強度的紫外光照射下能迅速發生光聚合反應,分子量急劇增大,材料也就從液態轉變成固態。SLA工作原理:液槽中盛滿液態光固化樹脂激光束在偏轉鏡作用下,能在液態表而上掃描,掃描的軌跡及光線的有無均由計算機控制,光點打到的地方,液體就固化。成型開始時,工作平台在液面下一個確定的深度.聚焦後的光斑在液面上按計算機的指令逐點掃描,即逐點固化。當一層掃描完成後.未被照射的地方仍是液態樹脂。然後升降台帶動平台下降一層高度,已成型的層面上又布滿一層樹脂,刮板將粘度較大的樹脂液面刮平,然後再進行下一層的掃描,新周化的一層牢周地粘在前一層上,如此重復直到整個零件製造完畢,得到一個三維實體模型。SLA 方法是目前快速成型技術領域中研究得最多的方法.也是技術上最為成熟的方法。SLA 工藝成型的零件精度較高,加工精度一般可達到 0.1 mm ,原材料利用率近 100 %。但這種方法也有白身的局限性,比如需要支撐、樹脂收縮導致精度下降、光固化樹脂有一定的毒性等。
2、LOM(Laminated Object Manufacturing,LOM)工藝LOM工藝稱疊層實體製造或分層實體製造,由美國Helisys公司的Michael Feygin於 1986 年研製成功。LOM工藝採用薄片材料,如紙、塑料薄膜等。片材表面事先塗覆上一層熱熔膠。加工時,熱壓輥熱壓片材,使之與下面已成型的工件粘接。用CO2激光器在剛粘接的新層上切割出零件截面輪廓和工件外框,並在截面輪廓與外框之間多餘的區域內切割出上下對齊的網格。激光切割完成後,工作台帶動已成型的工件下降,與帶狀片材分離。供料機構轉動收料軸和供料軸,帶動料帶移動,使新層移到加工區域。工作合上升到加工平面,熱壓輥熱壓,工件的層數增加一層,高度增加一個料厚。再在新層上切割截面輪廓。如此反復直至零件的所有截面粘接、切割完。最後,去除切碎的多餘部分,得到分層製造的實體零件。LOM 工藝只需在片材上切割出零件截面的輪廓,而不用掃描整個截面。因此成型厚壁零件的速度較快,易於製造大型零件。工藝過程中不存在材料相變,因此不易引起翹曲變形。工件外框與截面輪廓之間的多餘材料在加工中起到了支撐作用,所以 LOM 工藝無需加支撐。缺點是材料浪費嚴重,表面質量差。
3、SLS(Selective Laser Sintering)工藝 SLS工藝稱為選域激光燒結,由美國德克薩斯大學奧斯汀分校的C.R.Dechard於 1989 年研製成功。SLS工藝是利用粉末狀材料成型的。將材料粉末鋪灑在已成型零件的上表面,並刮平,用高強度的CO2激光器在剛鋪的新層上掃描出零件截面,材料粉末在高強度的激光照射下被燒結在一起,得到零件的截面,並與下面已成型的部分連接。當一層截面燒結完後,鋪上新的一層材料粉末,有選擇地燒結下層截面。燒結完成後去掉多餘的粉末,再進行打磨、烘乾等處理得到零件。SLS工藝的特點是材料適應面廣,不僅能製造塑料零件,還能製造陶瓷、蠟等材料的零件,特別是可以製造金屬零件。這使SLS工藝頗具吸引力。SLS工藝無需加支撐,因為沒有燒結的粉末起到了支撐的作用。
4、3DP (Three Dimension Printing)工藝三維印刷工藝是美國麻省理工學院E-manual Sachs等人研製的。已被美國的Soligen公司以DSPC(Direct Shell Proction Casting)名義商品化,用以製造鑄造用的陶瓷殼體和型芯。3DP 工藝與SLS工藝類似,採用粉末材料成型,如陶瓷粉末、金屬粉末。所不同的是材料粉末不是通過燒結連結起來的,而是通過噴頭用粘結劑(如硅膠)將零件的截面「印刷」在材料粉來上面。用粘結劑粘接的零件強度較低,還須後處理。先燒掉粘結劑,然後在高溫下滲人金屬,使零件緻密化,提高強度。
5 . FDM (Fused Depostion Modeling)工藝 熔融沉積製造(FDM)工藝由美國學者Scott Crump於 1988 年研製成功。FDM 的材料一般是熱塑性材料,如蠟、 ABS 、尼龍等。以絲狀供料。材料在噴頭內被加熱熔化。噴頭沿零件截面輪廓和填充軌跡運動,同時將熔化的材料擠出,材料迅速凝固,並與周圍的材料凝結。FDM技術是由Stratasys公司所設計與製造,可應用於一系列的系統中。這些系統為FDM Maxum,FDM Titan,Prodigy Plus以及Dimension。FDM技術利用ABS,polycarbonate(PC),polyphenylsulfone (PPSF)以及其它材料。這些熱塑性材料受到擠壓成為半熔融狀態的細絲,由沉積在層層堆棧基礎上的方式,從3D CAD資料直接建構原型。該技術通常應用於塑型,裝配,功能性測試以及概念設計。此外,FDM技術可以應用於打樣與快速製造。
其它材料: FDM技術還有其它的專用材料。這些包含polyphenylsulfone、橡膠材質以及蠟材。橡膠材質是用來作類似橡膠特性的功能性原型。蠟材是特別設計來建立脫蠟鑄造的樣品。蠟材的屬性讓FDM的樣品可以用來生產類似鑄造廠中的傳統蠟模。Polyphenylsulfone,一種應用於Titan機型的新工程材料,提供高耐熱性與抗化學性以及強度與硬度,其耐熱度為攝氏207.2度。
Stratasys宣布已經針對FDM快速原型系統Titan發表PPSF材料。在各種快速原型材料之中,PPSF (或是稱為 polyphenylsulfone)有著最高的強韌性、耐熱性、以及抗化學性。航天工業、汽車工業以及醫療產品業的生產製造商是第一批期待使用這種PPSF材料的用戶。航天業將會喜歡該材料的難燃屬性;汽車製造業也非常想應用其抗化學性以及在400度以上還能持續運作的能力;而醫療產品製造商將對PPSF材質的原型可以進行消毒的能力感到興趣。測試單位,Parker Hannifin安裝了一個PPSF作的模型到汽車引擎中。該零件是一個名為crankcase vapor coalescer的過濾器,裝在一組V8引擎並作40 小時的測試以決定過濾器媒介的效能。該零件收集的燃氣包含有160度的潤滑油,燃料,油煙,以及其它燃燒的化學反應生成物。Parker Hannifin的Russ Jensen說,「該裝配件並沒有產生外漏,並且其展現出與第一次裝配時相同的強度與屬性。我們相當滿意它的表現。」 測試單位,MSOE (Milwaukee School of Engineering)的操作經理Sheku Kamara,同樣地很滿意該新材料。「當在玻璃熔融的450度時,在各種快速原型材料之中,PPSF材料還擁有著除了金屬之外最高的操作溫度以及堅硬度,」他說。「在粘著劑測試期間,PPSF原型零件遭受於溫度從14度到392度的考驗且依然保持完整。」
顏色包含最常用到的白色,ABS提供六種材料顏色。色彩的選項包含藍色,黃色,紅色,綠色與黑色。醫學等級的ABSi 提供針對於半透明的應用,例如汽車車燈的透明紅色或是黃色。
屬性穩定度不像SLA以及PolyJet的樹脂,FDM材料的材料屬性不會隨著時間與環境曝曬而改變。就像是注塑成型的副本,這些材料幾乎在任何環境下都會保持他們的強度,硬度以及色彩。
精準性快速原型的尺寸精度取決於許多因素,而其結果可能會因為每個工件或是不同日期而有些微小變化。需要考慮的事情必須包含已知的條件,例如量測的時間范圍,工件的拚?約盎肪車鈉厴埂?axum,Titan以及Prodigy Plus精準度資料詳見附表一。精度測試工件如圖5、6所示,在每一台機器中均用層厚0.18 mm所建構以形成目前的精準性資料。
MAXUM TITAN PRODIGY
理論尺寸 實際尺寸 百分比 理論尺寸 百分比 理論尺寸 百分比
A 76.2 76.2 0.00 76.2 0.00 76.1 0.17
B 25.4 25.5 0.30 25.5 0.40 25.6 0.60
C 152.4 152.4 0.00 152.3 0.08 152.4 0.00
D 2.54 2.51 1.00 2.54 0.00 2.54 0.00
E 76.2 76.15 0.07 76.07 0.17 76.12 0.10
F 101.6 101.57 0.02 101.42 0.18 101.50 0.10
G 25.4 25.48 0.30 25.50 0.40 25.55 0.60
H1 12.7 12.62 0.60 12.65 0.40 12.55 1.20H2 12.7 12.62 0.60 12.67 0.20 12.55 1.20
I 12.7 12.67 0.20 12.7 0.00 12.62 0.60
J 6.35 6.43 1.20 6.55 3.05 6.48 2.00
K 12.7 12.67 0.20 12.78 0.60 12.78 0.60
Maxum、Titan以及Prodigy Plus的尺寸精度資料。所有的測試零件均用層厚0.18mm所建構。(單位:mm)
工件建構一般而言,FDM技術所提供的准確性通常相等或是優於SLA技術以及PolyJet技術,且確定優於SLS技術。然而,由於精準性是取決於許多的因素,所以矛盾的結果便會發生在個別的原型上。FDM技術的精準性受到較少的變數影響。用SLA,SLS以及PolyJet技術,尺寸精準性會受影響的因素有機器的校正,操作的技巧,工件的成型方向與位置,材料的年限以及收縮率。
Z軸這並非一定都會這樣,Z軸可能是被證明准確性最小的。除了先前所討論的變化之外,原型的高度可能由於層厚整數誤差而改變。對所有的RP系統而言都是這樣的。任何特徵的表面頂端或是底端無法對齊成為一層時,在軟體中的切層演算法會將尺寸整數化到最接近的層厚數。在最壞的情形下,一端的表面往下整數化而另一端向上,高度可能偏離一個層厚。對於典型的FDM參數,這可能會產生的誤差至少為0.127mm。
穩定性尺寸的穩定性是FDM原型的關鍵優勢,如同SLS技術,時間與環境的曝曬都不會改變工件的尺寸或其他的特徵。一但原型從FDM系統分離,當它達到室內溫度後,尺寸是固定不變的。如果溫度度數變化,用SLA 或是PolyJet技術則不是這樣的情形。
後處理輸出許多RP件都需要手工完成工件的光滑性。例如,SLA需要從工件表面手動移除支撐結構,且工件表面需要一些手工打磨。這表示工件的精準性不再只是受到系統精度的作用。它現在是受到後處理技師的技術等級所控制。對於塑型,裝配以及功能性原型,多數的使用者發現FDM工件的表面精度是可以接受的。那麼,當結合了水溶性支撐以及易剝離支撐,表示FDM原型的精準性不會受到手工的改變。當然,如果需要翻硅膠模用或是噴漆用的表面精度,FDM工件將需要後處理,如同其它的技術一樣。既然這樣,工件後處理技師的技藝在可以做到的原型精度上扮演了一個關鍵的角色。
表面完工精度受到使用者與Stratasys公司雙方的公認,FDM技術最明顯的限制就是表面完工精度。由於是半熔融狀態塑料擠製成型,表面完工精度比SLA與PolyJet還要粗糙,而與SLS不相上下。當由較小的線材寬度與較薄的層厚來改進表面完工精度時,仍然可以在頂端,底面,以及側牆看出經過擠壓噴嘴的等高線輪廓與建構層厚。表2所列的為Maxum與Titan的表面完工精度。為了改善表面完工精度,Maxum與Titan現在都提供0.127 mm層厚。使用者發現工件的成型方向,可以滿足考慮表面完工精度需求。這些要求較高完工精度的表面通常以垂直方向成型。較不重要的表面通常以水平方向成型,就像是底端或是頂端的表面。如同其它技術,二次加工(後處理輸出)可以用來使之相同。然而,ABS與polycarbonate材料的硬度讓打磨耗費人力。使用者通常使用溶劑或用是粘結劑完成或是預備用打磨。商業上可用的這些介質包含有熔接,ABS快乾膠,Acetone 以及two-part epoxies。要符合足夠的精度,FDM技術與競爭對手的產品都可以提供翻硅膠模用或是噴漆用的表面。這關鍵的差異是要花費多少時間才能達到要求的結果。
特徵定義:盡管高階的FDM系統可以生產較小的特徵,大多數FDM原型的最小特徵尺寸受限於兩倍線材寬度。沒有使用者的介入,FDM技術使用的」closed path」選項會限制最小特徵尺寸為兩倍擠壓成型噴組的寬度。對於一般噴嘴與建造參數而言,最小特徵尺寸范圍從0.4到 0.6 mm。盡管大於SLA與PolyJet的最小特徵尺寸,但是該范圍是與這些技術的可用最小特徵尺寸相同。盡管SLA技術可以建造小到0.08 (Viper si2機種)或0.25 mm (所有機種),以及PolyJet技術可以建造小到0.04mm,幾乎很少原型會用到這些極小值的優勢來作最小的細節。考慮到材料屬性,通常發現SLA技術與PolyJet技術的原型常用最小特徵尺寸為0.5mm。FDM技術的最小特徵尺寸相等於或是優於SLS技術的0.6到 0.8 mm。由於材料屬性相似於注塑成型的ABS或是polycarbonate,FDM技術可以給予功能性特徵尺寸在0.4到 0.6 mm范圍中。
環境抵抗力:FDM原型提供的材料性質相似於熱塑性材料。這包含了環境的與化學的曝曬。對ABS材料而言,使用者可以實驗他們的原型在93度的溫度下以及包含石油,汽油以及甚至某些酸類等的化學媒介。一關鍵的考慮為水氣的曝曬,包括浸沒與濕氣。SLA技術與PolyJet技術使用的光敏樹脂對於潮濕水氣敏感且會受到傷害。暴曬在水中或是濕氣中不只會影響原型的機械屬性,也會影響尺寸精度。當光敏樹脂的原型吸收了水氣之後,他們將會開始軟化並且變的有點易於彎曲。而且,工件會有翹曲或是膨脹的傾向,這會嚴重影響尺寸的精度。FDM技術的原型,以及SLS技術的原型,都不受濕氣影響,所以他們可以保持原有的機械屬性以及尺寸精度。
機械加工:FDM原型可以進行銑床加工,鑽孔,研磨,車床加工等。為了補償表面精度不足並加強特徵細節,當有特殊的品質需求時,使用者通常會進行二次加工來提升原型的細節。在考慮原型的物理屬性之後,注意力應該轉移至操作的參數上。下列領域可以影響到原型在預期應用上的使用。
工件尺寸:不像某些快速原型技術,廣告中FDM技術的建造范圍就是最大的工件尺寸。在家族系列產品中,FDM技術提供了廣泛的建造范圍。Maxum,最超大型,所提供的工件尺寸可達600 x 500 x 600 mm。這樣的建造范圍與最大型的SLA系統相同。Titan,則提供最大的工件尺寸為406 x 355 x 406 mm。這樣的建造范圍稍微大於SLS Sinterstations系統。Prodigy Plus,辦公室桌上型,擁有的建造范圍為203 x 203 x 305 mm,該尺寸稍微大於PolyJet系統以及最小型的SLA系統。當使用具競爭性的技術時,快速原型超過建造范圍的部分通常分段建構然後作粘結。使用商業上可用ABS快乾膠,FDM工件的粘和強度可以滿足功能性測試的應用。此外,FDM工件可以使用超音波熔接,這種選項無法使用在SLA以及PolyJet,因為他們不是使用熱塑性材料。
支撐結構:在FDM技術中,需要支撐結構來形成基底以製作工件並支撐任何超過懸掛的特徵。在工件的介面,支撐材料的堅固堆層已經放下。在這堅固堆層下,線材為0.5mm且在間隔為3.8mm下沉積。FDM技術提供兩種類型的支撐--易於剝離支撐結構(BASS)以及水溶性支撐結構(WaterWorks)。BASS支撐是由手工將支撐從工件表面剝離以移除。當他們不想損壞工件表面,考慮的是必須要容易進入與接近細小特徵。水溶性支撐(WaterWorks)是使用水溶性材料,可分解於鹼性水溶劑的解決方案。不像是易於剝離支撐(BASS),該支撐可以任意坐落於工件深處地嵌壁式的區域,或是接觸於細小特徵,因為機械式的移除方式是可以不加考慮的。此外,水溶性支撐可以保護細小特徵。在其它的快速原型技術中,他們要如何移除支撐而不造成特徵損壞,是一項極大挑戰。
一體成型的裝配件隨著水溶性支撐的出現,FDM技術提供了一項獨特的解決方案--建構可運轉的一體成型裝配件。因為水溶性支撐可以進行分解,一個多件的裝配件可以在一次機械運轉中建構完成。當多件的裝配件可以在SLS或是PolyJet中實行時,要小心地考慮到殘留在原件之間的材料。舉例來說,如圖3所示的FDM技術的腦型齒輪組,可以不用手工勞動就能完成並用一些時間就能將水溶性支撐進行分解。用SLS技術製作這樣相同的工件,可能需要一個小時以上的手工勞動來清除齒輪與軸柄之件的粉末。有了水溶性支撐,整個裝配件的CAD資料可以當作一個工件處理。同樣地,也不需要手工勞動或是時間進行工件的裝配。
快速成型設備最好能放置於電腦設計室內以便於工作,要求設備無煙塵、無震動和噪音並且材料安全無毒。而光敏樹脂(SLA)液態原材料有毒,需特別小心處理,並且需配置抽風系統,以抽除建模過程中產生之毒煙;而粉末材料(SLS)需配備抽風系統、吸塵設備、防塵箱及氮氣發生系統;紙張(LOM)也需要配置抽風系統以抽除建模過程中產生之煙霧;只有美國Stratasys公司的FDM快速成型機只需要在一般辦公室環境下操作。許多FDM技術的使用者把該技術當作設計的周邊。就本身而言,為了在製程早期就能審核與確認設計概念,該技術已經變得另一種與CAD系統連結並驅動的工具。由於這樣的應用,FDM技術都是作為概念模型工具以清楚地傳達日益精緻與復雜的設計。當FDM技術無法從概念模型中提供預期的速度,它提供了結合概念模型與視覺應用的優勢。這些強處包含精準性,材料屬性,色彩以及免用手動工件後處理。盡管材料強度與硬度並非概念模型的關鍵,但是它通常值得關注,因為脆弱的模型通常在最不適當的時機破裂。FDM技術的模型也應用於銷售與行銷,包含內部與外部。對內,FDM技術的原型是用來給銷售團隊,管理階層以及其它員工在開始製造之前看一眼產品長相。對外,原型是用來在產品作商品化之前引起預期客戶的興奮與興趣。
塑型,裝配以及功能性模型:對許多技術而言,快速原型的應用在塑型,裝配以及功能性分析方面時需要作某些方面的犧牲。盡管SLA技術與PolyJet技術提供較好的細節,精準度與表面加工精度,但是他們無法提供必要的強度與硬度。同樣地,SLS技術提供強度而犧牲精準性與細節。
修整樣品:快速原型可以用來作為建立模具的樣品。不像其它快速原型技術,FDM技術可以成功地用來製作樣品。然而,必須考慮表面加工精度與工件後處理到可以作為母模所需時間。脫蠟鑄造是樣品的額外用途,樣品必須能在他們自己所建立陶砂殼模之中燃燒消耗掉。FDM技術製程所建構的蠟模與ABS模都被證實適合應用在陶砂殼模之中燃燒消耗的標准鑄造流程。
快速製造(少量多樣)快速原型激起對於短期製造的興趣,對於少到只有一個單位的訂單都很合算。這樣的應用需要工件在許多領域都符合功能性規格。在FDM技術的精準性與材料屬性都是可用之際,它是少數致力於該應用的技術之一。當尚未經過最後加工修飾的FDM工件可能受限使用於可視化,裝飾的應用,但不受妨礙它去作為內部組件,或是那些不需要藝術吸引力的用途。對於快速製造的應用,運行時間將會成為一項重要的考慮。然而,就像幾位使用者的證明,為數不多的工件運行時間是明顯地少於生產模具與成品所需要的總時間。
4. 簡述快速成型技術製造工藝的相同點和不同點
深圳市凱福精密製造有限公司從事多年快速成型加工,客服人員解答如下:
快速成型主要有SLA、SLS、LOM和FDM等方法
他們的共同點:基本原理都是一樣的,那就是"分層製造,逐層疊加", 類似於數學上的積分過程。形象地講,快速成形系統就像是一台"立體列印機"。
不同點:
SLA:材料限於光敏樹脂,適合於製作中小形工件,能直接得到塑料產品。主要用於概念模型的原型製作,或用來做裝配檢驗和工藝規劃。
SLS:合成型中小件,能直接的到塑料、陶瓷或金屬零件,零件的翹曲變形比液態光敏樹脂選擇性固化工藝要小。但這種工藝仍需對整個截面進行掃描和燒結,加上工作室需要升溫順冷卻,成型時間較長。適合於產品設計的可視化表現和製作功能測試零件。由於它可採用各種不同成分的金屬粉末進行燒結、進行滲銅等後處理,因而其製成的產品可具有與金屬零件相近的機械性能,故可用於製作EDM電極、直接製造金屬模以及進行小批量零件生產。 最大優點是可選用多種材料,適合不同的用途、所製作的原型產品具有較高的硬度,可進行功能試驗。
LOM:適合製作大中型原型件,翹曲變形較小,尺寸精度較高,成型時間較短,激光器使用壽命長,製成件有良好的機械性能,適合於產品設計的概念建模和功能性測試零件。且由於製成的零件具有木質屬性,特別適合於直接製作砂型鑄造模。
FDM:有多種材料選用,如ABS塑料、澆鑄用蠟、人造橡膠等。這種工藝干凈,易於操縱,不產生垃圾,小型系統可用於辦公環境,沒有產生毒氣和化學污染的危險。但仍需對整個截面進行掃描塗覆,成型時間長。適合於產品設計的概念建模以及產品的外形及功能測試。由於甲基丙烯酸ABS(MABS)材料具有較好的化學穩定性,可採用加碼射線消毒,特別適用於醫用。但成型精度相對較低,不適合於製作結構過分復雜的零件。
5. 快速成型的方法有哪些
快速成型的方法有CNC加工,SLA,SLA,硅膠復模等,你可以根據不同的材料及結構要求選擇適合的工藝。
有興趣可以到我們網站看看相關技術介紹:www.laiyish.com
上海專業手板模型、快速成型製作
6. 快速成形加工原理及特點
對其進行分層處理,得到各層截面的二維輪廓信息,按照這些輪廓信息自動生成加工路徑,由成型頭在控制系統的控制下,選擇性地固化或切割一層層的成型材料,形成各個截面輪廓薄片,並逐步順序疊加成三維坯件,然後進行坯件的後處理,形成零件。
2.快速成形工藝過程及特點
1)工藝過程
(1)產品三維模型的構建。由於RP系統是由三維CAD模型直接驅動,因此首先要構建所加工工件的三維CAD模型。該三維CAD模型可以利用計算機輔助設計軟體(如Pro/E,I-DEAS,Solid Works,NX等)直接構建,也可以將已有產品的二維圖樣進行轉換而形成三維模型,或對產品實體進行激光掃描、CT斷層掃描,得到點雲數據,然後利用反求工程的方法來構造三維模型。
(2)三維模型的近似處理。由於產品往往有一些不規則的自由曲面,加工前要對模型進行近似處理,以方便後續的數據處理工作。由於STL格式文件格式簡單、實用,目前已經成為快速成型領域的准標准介面文件。它是用一系列的小三角形平面來逼近原來的模型,每個小三角形用3個頂點坐標和一個法向量來描述,三角形的大小可以根據精度要求進行選擇。STL文件有二進制碼和ASCⅡ碼兩種輸出形式,二進制碼輸出形式所佔的空間比ASCⅡ碼輸出形式的文件所佔用的空間小得多,但ASCⅡ碼輸出形式可以閱讀和檢查。典型的CAD軟體都帶有轉換和輸出STL格式文件的功能。
(3)三維模型的切片處理。根據被加工模型的特徵選擇合適的加工方向,在成型高度方向上用一系列一定間隔的平面切割近似後的模型,以便提取截面的輪廓信息。間隔一般取0.05mm~0.5mm,常用0.1mm。間隔越小,成型精度越高,但成型時間也越長,效率就越低,反之則精度低,但效率高。
(4)成型加工。根據切片處理的截面輪廓,在計算機控制下,相應的成型頭(激光頭或噴頭)按各截面輪廓
(5)成型零件的後處理。從成型系統里取出成型件,進行打磨、拋光,或放在高溫爐中進行後燒結,進一步提高其強度。
成型過程示意圖
2)特點:
(1)可以製造任意復雜的三維幾何實體。由於採用離散/堆積成型的原理,它將一個十分復雜的三維製造過程簡化為二維過程的疊加,可實現對任意復雜形狀零件的加工。越是復雜的零件越能顯示出RP技術的優越性此外,RP技術特別適合於復雜型腔、復雜型面等傳統方法難以製造甚至無法製造的零件。
(2)快速性。通過對一個CAD模型的修改或重組就可獲得一個新零件的設計和加工信息。從幾個小時到幾十個小時就可製造出零件,具有快速製造的突出特點。
(3)高度柔性。無需任何專用夾具或工具即可完成復雜的製造過程,快速製造零件。
(4)快速成型技術實現了機械工程學科多年來追求的兩大先進目標,即材料的提取(氣、液固相)過程與製造過程一體化和設計(CAD)與製造(CAM)一體化。
(5)與反求工程(Reverse Engineering)、CAD技術、網路技術、虛擬現實等相結合,成為產品決速開發的有力工具。
因此,快速成型技術在製造領域中起著越來越重要的作用,並將對製造業產生重要影響。
本文介紹了快速成型的基本理論,快速成型工藝過程及特點,以及快速成型的分類和應用領域
3.快速成形分類
快速成型技術根據成型方法可分為兩類:基於激光及其他光源的成型技術(Laser Technology),例如:光固化成型(SLA)、分層實體製造(LOM)、選域激光粉末燒結(SLS)、形狀沉積成型(SDM)等;基於噴射的成型技術(Jetting Technoloy),例如:熔融沉積成型(FDM)、三維印刷(3DP)、多相噴射沉積(MJD)。下面對其中比較成熟的工藝作簡單的介紹。
1)SLA(Stereo Lithography Apparatus)方法是目前快速成型技術領域中研究得最多的方法,也是技術上最為成熟的方法。SLA工藝成型的零件精度較高,加工精度一般可達到0.1mm,原材料利用率近100%。但這種方法也有自身的局限性,比如需要支撐、樹脂收縮導致精度下降、光固化樹脂有一定的毒性等。
2)LOM(Laminated bbbbbb Manufacturing)工藝LOM工藝稱疊層實體製造或分層實體製造,採用薄片材料,如紙、塑料薄膜等。
LOM工藝只需在片材上切割出零件截面的輪廓,而不用掃描整個截面。因此成型厚壁零件的速度較快,易於製造大型零件。工藝過程中不存在材料相變,因此不易引起翹曲變形。工件外框與截面輪廓之間的多餘材料在加工中起到了支撐作用,所以LOM工藝無需加支撐。缺點是材料浪費嚴重,表面質量差。
7. 簡述快速成型技術基本原理
快速成形技術是在計算機控制下,基於離散、堆積的原理採用不同方法堆積材料,最終完成零件的成形與製造的技術。
從成形角度看,零件可視為「點」或「面」的疊加。從CAD電子模型中離散得到「點」或「面」的幾何信息,再與成形工藝參數信息結合,控制材料有規律、精確地由點到面,由面到體地堆積零件。
從製造角度看,它根據CAD造型生成零件三維幾何信息,控制多維系統,通過激光束或其他方法將材料逐層堆積而形成原型或零件。
(7)快速成型工藝方法擴展閱讀
快速成形技術特點:
1、成型全過程的快速性,適合現代激烈的產品市場;
2、可以製造任意復雜形狀的三維實體;
3、用CAD模型直接驅動,實現設計與製造高度一體化,其直觀性和易改性為產品的完美設計提供了優良的設計環境;
4、成型過程無需專用夾具、模具、刀具,既節省了費用,又縮短了製作周期。
5、技術的高度集成性,既是現代科學技術發展的必然產物,也是對它們的綜合應用,帶有鮮明的高新技術 特徵。
8. 快速成型技術有哪些
一、SLA(激光快速成型),成型材料:光敏樹脂;
二、FDM(熔融堆積成型),成型材料:ABS,PC,PPSF等;
三、OBJET(高精度快速成型),和SLA成型原理類似,材料:光敏樹脂。
四、真空復模,運用硅膠材料製作簡易模具,進行小批量的澆注成型。
五、低壓灌注,適用於結構接單的大件製作。
9. 簡述四種快速成行技術的原理及應用
四種快速成行技術主要工藝有四種基本類型:光固化成型法、分層實體製造法、選擇性激光燒結法和熔融沉積製造法。
1、光固化成形
SLA(Stereo lithography Apparatus)工藝也稱光造型、立體光刻及立體印刷,其工藝過程是以液態光敏樹脂為材料充滿液槽,由計算機控制激光束跟蹤層狀截面軌跡,並照射到液槽中的液體樹脂,而使這一層樹脂固化,之後升降台下降一層高度,已成型的層面上又布滿一層樹脂,然後再進行新一層的掃描,新固化的一層牢固地粘在前一層上,如此重復直到整個零件製造完畢,得到1個三維實體模型。該工藝的特點是:原型件精度高,零件強度和硬度好,可制出形狀特別復雜的空心零件,生產的模型柔性化好,可隨意拆裝,是間接制模的理想方法。缺點是需要支撐,樹脂收縮會導致精度下降,另外光固化樹脂有一定的毒性而不符合綠色製造發展趨勢等。
2、分層實體製造
LOM(Laminated Object Manufacturing)工藝或稱為疊層實體製造,其工藝原理是根據零件分層幾何信息切割箔材和紙等,將所獲得的層片粘接成三維實體。其工藝過程是:首先鋪上一層箔材,然後用CO,激光在計算機控制下切出本層輪廓,非零件部分全部切碎以便於去除。當本層完成後,再鋪上一層箔材,用滾子碾壓並加熱,以固化黏結劑,使新鋪上的一層牢固地粘接在已成形體上,再切割該層的輪廓,如此反復直到加工完畢,最後去除切碎部分以得到完整的零件。該工藝的特點是工作可靠,模型支撐性好,成本低,效率高。缺點是前、後處理費時費力,且不能製造中空結構件。
3、選擇性激光燒結
SLS(Selective Laser Sintering)工藝,常採用的材料有金屬、陶瓷、ABS塑料等材料的粉末作為成形材料。其工藝過程是:先在工作台上鋪上一層粉末,在計算機控制下用激光束有選擇地進行燒結(零件的空心部分不燒結,仍為粉末材料),被燒結部分便固化在一起構成零件的實心部分。一層完成後再進行下一層,新一層與其上一層被牢牢地燒結在一起。全部燒結完成後,去除多餘的粉末,便得到燒結成的零件。該工藝的特點是材料適應面廣,不僅能製造塑料零件,還能製造陶瓷、金屬、蠟等材料的零件。造型精度高,原型強度高,所以可用樣件進行功能試驗或裝配模擬。
4、熔融沉積成形
FDM(Fused Deposition Manufacturing)工藝又稱為熔絲沉積製造,其工藝過程是以熱塑性成形材料絲為材料,材料絲通過加熱器的擠壓頭熔化成液體,由計算機控制擠壓頭沿零件的每一截面的輪廓准確運動,使熔化的熱塑材料絲通過噴嘴擠出,覆蓋於已建造的零件之上,並在極短的時間內迅速凝固,形成一層材料。之後,擠壓頭沿軸向向上運動一微小距離進行下一層材料的建造。這樣逐層由底到頂地堆積成一個實體模型或零件。該工藝的特點是使用、維護簡單,成本較低,速度快,一般復雜程度原型僅需要幾個小時即可成型,且無污染。
10. 快速成型的工作原理
RP系統可以根據零件的形狀,每次製做一個具有一定微小厚度和特定形狀的截面,然後再把它們逐層粘結起來,就得到了所需製造的立體的零件。當然,整個過程是在計算機的控制下,由快速成形系統自動完成的。不同公司製造的RP系統所用的成形材料不同,系統的工作原理也有所不同,但其基本原理都是一樣的,那就是分層製造、逐層疊加。這種工藝可以形象地叫做增長法或加法。
每個截面數據相當於醫學上的一張CT像片;整個製造過程可以比喻為一個積分的過程。
RP技術的基本原理是:將計算機內的三維數據模型進行分層切片得到各層截面的輪廓數據,計算機據此信息控制激光器(或噴嘴)有選擇性地燒結一層接一層的粉末材料(或固化一層又一層的液態光敏樹脂,或切割一層又一層的片狀材料,或噴射一層又一層的熱熔材料或粘合劑)形成一系列具有一個微小厚度的的片狀實體,再採用熔結、聚合、粘結等手段使其逐層堆積成一體,便可以製造出所設計的新產品樣件、模型或模具。自美國3D公司1988年推出第一台商品SLA快速成形機以來,已經有十幾種不同的成形系統,其中比較成熟的有UV、SLA、SLS、LOM和FDM等方法。其成形原理分別介紹如下: Stereo lithography Appearance的縮寫,即立體光固化成型法.
用特定波長與強度的激光聚焦到光固化材料表面,使之由點到線,由線到面順序凝固,完成一個層面的繪圖作業,然後升降台在垂直方向移動一個層片的高度,再固化另一個層面.這樣層層疊加構成一個三維實體.
SLA是最早實用化的快速成形技術,採用液態光敏樹脂原料,工藝原理如圖所示。其工藝過程是,首先通過CAD設計出三維實體模型,利用離散程序將模型進行切片處理,設計掃描路徑,產生的數據將精確控制激光掃描器和升降台的運動;激光光束通過 數控裝置控制的掃描器,按設計的掃描路徑 照射到液態光敏樹脂表面 , 使表面特定區域內的一層樹脂固化後, 當一層加工完畢後,就生成零件的一個截面;然後 升降台下降一定距離 , 固化層上覆蓋另一層液態樹脂,再進行第二層掃描,第二固化層牢固地粘結在前一固化層上,這樣一層層疊加而成三維工件原型。將原型從樹脂中取出後,進行最終固化,再經打光、電鍍、噴漆或著色處理即得到要求的產品。
SLA技術主要用於製造多種模具、模型等;還可以在原料中通過加入其它成分,用SLA原型模代替熔模精密鑄造中的蠟模。SLA技術成形速度較快,精度較高,但由於樹脂固化過程中產生收縮,不可避免地會產生應力或引起形變。因此開發收縮小、固化快、強度高的光敏材料是其發展趨勢。
3D Systems 推出的Viper Pro SLA system
SLA 的優勢
⒈ 光固化成型法是最早出現的快速原型製造工藝,成熟度高,經過時間的檢驗.
⒉ 由CAD數字模型直接製成原型,加工速度快,產品生產周期短,無需切削工具與模具.
⒊可以加工結構外形復雜或使用傳統手段難於成型的原型和模具.
⒋ 使CAD數字模型直觀化,降低錯誤修復的成本.
⒌ 為實驗提供試樣,可以對計算機模擬計算的結果進行驗證與校核.
⒍ 可聯機操作,可遠程式控制制,利於生產的自動化.
SLA 的缺憾
⒈ SLA系統造價高昂,使用和維護成本過高.
⒉ SLA系統是要對液體進行操作的精密設備,對工作環境要求苛刻.
⒊ 成型件多為樹脂類,強度,剛度,耐熱性有限,不利於長時間保存.
⒋ 預處理軟體與驅動軟體運算量大,與加工效果關聯性太高.
⒌ 軟體系統操作復雜,入門困難;使用的文件格式不為廣大設計人員熟悉.
⒍ 立體光固化成型技術被單一公司所壟斷.
SLA 的發展趨勢與前景
立體光固化成型法的的發展趨勢是高速化,節能環保與微型化.
不斷提高的加工精度使之有最先可能在生物,醫葯,微電子等領域大有作為. 選擇性激光燒結(以下簡稱SLS)技術最初是由美國德克薩斯大學奧斯汀分校的Carl ckard於1989年在其碩士論文中提出的。後美國DTM公司於1992年推出了該工藝的商業化生產設備Sinter Sation。幾十年來,奧斯汀分校和DTM公司在SLS領域做了大量的研究工作,在設備研製和工藝、材料開發上取得了豐碩成果。德國的EOS公司在這一領域也做了很多研究工作,並開發了相應的系列成型設備。
國內也有多家單位進行SLS的相關研究工作,如西安交通大學機械學院,快速成型國家工程研究中心,教育部快速成型工程研究中心,華中科技大學、南京航空航天大學、西北工業大學、中北大學和北京隆源自動成型有限公司等,也取得了許多重大成果,如南京航空航天大學研製的RAP-I型激光燒結快速成型系統、北京隆源自動成型有限公司開發的AFS一300激光快速成型的商品化設備。
選擇性激光燒結是採用激光有選擇地分層燒結固體粉末,並使燒結成型的固化層層層疊加生成所需形狀的零件。其整個工藝過程包括CAD模型的建立及數據處理、鋪粉、燒結以及後處理等。SLS技術的快速成型系統工作原理見圖1。
整個工藝裝置由粉末缸和成型缸組成,工作時粉末缸活塞(送粉活塞)上升,由鋪粉輥將粉末在成型缸活塞(工作活塞)上均勻鋪上一層,計算機根據原型的切片模型控制激光束的二維掃描軌跡,有選擇地燒結固體粉末材料以形成零件的一個層面。粉末完成一層後,工作活塞下降一個層厚,鋪粉系統鋪上新粉.控制激光束再掃描燒結新層。如此循環往復,層層疊加,直到三維零件成型。最後,將未燒結的粉末回收到粉末缸中,並取出成型件。對於金屬粉末激光燒結,在燒結之前,整個工作台被加熱至一定溫度,可減少成型中的熱變形,並利於層與層之間的結合。
與其它快速成型(RP)方法相比,SLS最突出的優點在於它所使用的成型材料十分廣泛。從理論上說,任何加熱後能夠形成原子間粘結的粉末材料都可以作為SLS的成型材料。可成功進行SLS成型加工的材料有石蠟、高分子、金屬、陶瓷粉末和它們的復合粉末材料。由於SLS成型材料品種多、用料節省、成型件性能分布廣泛、適合多種用途以及SLS無需設計和製造復雜的支撐系統,所以SLS的應用越來越廣泛。
SLS技術的金屬粉末燒結方法
3.1金屬粉末和粘結劑混合燒結
首先將金屬粉末和某種粘結劑按一定比例混合均勻,用激光束對混合粉末進行選擇性掃描,激光的作用使混合粉末中的粘結劑熔化並將金屬粉末粘結在一起,形成金屬零件的坯體。再將金屬零件坯體進行適當的後處理,如進行二次燒結來進一步提高金屬零件的強度和其它力學性能。這種工藝方法較為成熟,已經能夠製造出金屬零件,並在實際中得到使用。南京航空航天大學用金屬粉末作基體材料(鐵粉),加人適量的枯結劑,燒結成形得到原型件,然後進行後續處理,包括燒失粘結劑、高溫焙燒、金屬熔滲(如滲銅)等工序,最終製造出電火花加工電極(見圖2)。並用此電極在電火花機床上加工出三維模具型腔(見圖3)。
3.2金屬粉末激光燒結
激光直接燒結金屬粉末製造零件工藝還不十分成熟,研究較多的是兩種金屬粉末混合燒結,其中一種熔點較低,另一種較高。激光燒結將低熔點的粉末熔化,熔化的金屬將高熔點金屬粉末粘結在一起。由於燒結好的零件強度較低,需要經過後處理才能達到較高的強度。美國Texas大學Austin分校進行了沒有聚合物粘結劑的金屬粉末如CuSn NiSn青銅鎳粉復合粉末的SLS成形研究,並成功地製造出金屬零件。他們對單一金屬粉末激光燒結成形進行了研究,成功地製造了用於F1戰斗機和AIM9導彈的工NCONEL625超合金和Ti6A 14合金的金屬零件。美國航空材料公司已成功研究開發了先進的欽合金構件的激光快速成形技術。中國科學院金屬所和西安交通大學等單位正致力於高熔點金屬的激光快速成形研究,南京航空航天大學也在這方面進行了研究,用Ni基合金混銅粉進行燒結成形的試驗,成功地製造出具有較大角度的倒錐形狀的金屬零件(見圖4)。
3.3金屬粉末壓坯燒結
金屬粉末壓坯燒結是將高低熔點的兩種金屬粉末預壓成薄片坯料,用適當的工藝參數進行激光燒結,低熔點的金屬熔化,流人到高熔點的顆粒孔隙之間,使得高熔點的粉末顆粒重新排列,得到緻密度很高的試樣。吉林大學郭作興等用此方法對FeCu,Fe C等合金進行試驗研究,發現壓坯激光燒結具有與常規燒結完全不同的緻密化現象,激光燒結後的組織隨冷卻方式而異,空冷得到細珠光體,淬火後得到馬氏體和粒狀。
4 SLS技術金屬粉末成型存在的問題
SLS技術是非常年輕的一個製造領域,在許多方面還不夠完善,如製造的三維零件普遍存在強度不高、精度較低及表面質量較差等問題。SLS工藝過程中涉及到很多參數(如材料的物理與化學性質、激光參數和燒結工藝參數等),這些參數影響著燒結過程、成型精度和質量。零件在成型過程中,由於各種材料因素、工藝因素等的影響,會使燒結件產生各種冶金缺陷(如裂紋、變形、氣孔、組織不均勻等)。
4.1粉末材料的影響
粉末材料的物理特性,如粉末粒度、密度、熱膨脹系數以及流動性等對零件中缺陷形成具有重要的影響。粉末粒度和密度不僅影響成型件中缺陷的形成,還對成型件的精度和粗糙度有著顯著的影響。粉末的膨脹和凝固機制對燒結過程的影響可導致成型件孔隙增加和抗拉強度降低。
4.2工藝參數的影響
激光和燒結工藝參數,如激光功率、掃描速度和方向及間距、燒結溫度、燒結時間以及層厚度等對層與層之間的粘接、燒結體的收縮變形、翹曲變形甚至開裂都會產生影響。上述各種參數在成型過程中往往是相互影響的,如Yong Ak Song等研究表明降低掃描速度和掃描間距或增大激光功率可減小表面粗糙度,但掃描間距的減小會導致翹曲趨向增大。
因此,在進行最優化設計時就需要從總體上考慮各參數的優化,以得到對成型件質量的改善最為有效的參數組。製造出來的零件普遍存在著緻密度、強度及精度較低、機械性能和熱學性能不能滿足使用要求等一些問題。這些成型件不能作為功能性零件直接使用,需要進行後處理(如熱等靜壓HIP、液相燒結LPS、高溫燒結及熔浸)後才能投人實際使用。此外,還需注意的是,由於金屬粉末的SLS溫度較高,為了防止金屬粉末氧化,燒結時必須將金屬粉末封閉在充有保護氣體的容器中。
5 總結與展望
快速成型技術中,金屬粉末SLS技術是人們研究的一個熱點。實現使用高熔點金屬直接燒結成型零件,對用傳統切削加工方法難以製造出高強度零件,對快速成型技術更廣泛的應用具有特別重要的意義。展望未來,SLS形技術在金屬材料領域中研究方向應該是單元體系金屬零件燒結成型,多元合金材料零件的燒結成型,先進金屬材料如金屬納米材料,非晶態金屬合金等的激光燒結成型等,尤其適合於硬質合金材料微型元件的成型。此外,根據零件的具體功能及經濟要求來燒結形成具有功能梯度和結構梯度的零件。我們相信,隨著人們對激光燒結金屬粉末成型機理的掌握,對各種金屬材料最佳燒結參數的獲得,以及專用的快速成型材料的出現,SLS技術的研究和引用必將進入一個新的境界。 分層實體製造(LOM——Laminated Object Manufacturing)法,LOM又稱層疊法成形,它以片材(如紙片、塑料薄膜或復合材料)為原材料,其成形原理如圖所示,激光切割系統按照計算機提取的橫截面輪廓線數據,將背面塗有熱熔膠的紙用激光切割出工件的內外輪廓。切割完一層後,送料機構將新的一層紙疊加上去,利用熱粘壓裝置將已切割層粘合在一起,然後再進行切割,這樣一層層地切割、粘合,最終成為三維工件。LOM常用材料是紙、金屬箔、塑料膜、陶瓷膜等,此方法除了可以製造模具、模型外,還可以直接製造結構件或功能件。該方法的特點是原材料價格便宜、成本低。
成形材料:塗敷有熱敏膠的纖維紙;
製件性能:相當於高級木材;
主要用途:快速製造新產品樣件、模型或鑄造用木模。 熔積成型(FDM——Fused Deposition Modeling)法,該方法使用絲狀材料(石蠟、金屬、塑料、低熔點合金絲)為原料,利用電加熱方式將絲材加熱至略高於熔化溫度(約比熔點高 1℃),在計算機的控制下,噴頭作x-y平面運動,將熔融的材料塗覆在工作台上,冷卻後形成工件的一層截面,一層成形後,噴頭上移一層高度,進行下一層塗覆,這樣逐層堆積形成三維工件。該方法污染小,材料可以回收,用於中、小型工件的成形。下圖為FDM成形原理圖。
成形材料:固體絲狀工程塑料;
製件性能:相當於工程塑料或蠟模;
主要用途:塑料件、鑄造用蠟模、樣件或模型。
特點:1、優點:(1)操作環境干凈,安全,在辦公室課進行;(2)工藝干凈、簡單、易於操作且不產生垃圾;(3)尺寸精度高,表面質量好,易於裝配,可快速構建瓶狀或中空零件;(4)原材料以卷軸絲的形式提供,易於搬運和金額快速更換;(5)原料價格便宜;(6)材料利用率高;(7)可選用的材料較多,如染色的ABS、PLA和醫用ABD、PC、PPSF、人造橡膠、鑄造用蠟。
2、缺點:(1)精度較低,難以構建結構復雜的零件;(2)與截面垂直方向的強度小;(3)成型速度相對較慢,不適合構建大型零件。