導航:首頁 > 方法技巧 > 數形結合的技巧和方法

數形結合的技巧和方法

發布時間:2022-09-10 15:07:54

㈠ 舉三個例子說明什麼是數形結合思想

數與形是數學中的兩個最古老,也是最基本的研究對象,它們在一定條件下可以相互轉化。中學數學研究的對象可分為數和形兩大部分,數與形是有聯系的,這個聯系稱之為數形結合,或形數結合。作為一種數學思想方法,數形結合的應用大致又可分為兩種情形:或者藉助於數的精確性來闡明形的某些屬性,或者藉助形的幾何直觀性來闡明數之間某種關系,即數形結合包括兩個方面:第一種情形是「以數解形」,而第二種情形是「以形助數」。「以數解形」就是有些圖形太過於簡單,直接觀察卻看不出什麼規律來,這時就需要給圖形賦值,如邊長、角度等。

舉例:
1、畫線段圖分析應用題。
2、根據圖形的個數不同找規律。
3、平方差公式的推導。

㈡ 二次函數數形結合解題技巧

緊扣(1)開口方向與a的關系
(2)對稱軸與a,b關系(才能弄清對稱軸在原點的左還是右)
(3)圖像與y軸交於原點上或下的位置與c符號關系
(4)令y=0求圖像與x軸焦點的橫坐標
(5)令x=0求圖像與y軸交點的縱坐標
(6)弄清判別式符號與x軸交點的個數
(7)熟悉二次函數的三種解析式的意義
(8)掌握二次函數與直線交點的求法以及交點個數的判斷方法
弄清這些基本知識與基本技能,才是真正的技巧,腳踏實地由易到難持之以恆才是法寶

㈢ 數形結合數學思想方法

小學數學中雖然沒有學習函數,但還是慢慢的開始滲透函數的思想。為初中數學學習打好基礎,如確實位置中,用數對表示平面圖形上的點,點的平移引起了了數對的變化,而數對變化也對應了不同的點。下面我給大家整理了關於數形結合數學思想 方法 ,希望對你有幫助!

1數形結合數學思想方法

「數」與「形」是數學的基本研究對象,他們之間存在著對立統一的辨證關系。數形結合是一種重要的數學思想,是人們認識、理解、掌握數學的意識,它是我們解題的重要手段,是根據數理與圖形之間的關系,認識研究對象的數學特徵,尋求解決問題的方法的一種數學思想。它是在一定的數學知識、數學方法的基礎上形成的。它對理解、掌握、運用數學知識和數學方法,觖決數學問題能起到促進和深化的作用。

2數形結合數學思想方法

用圖形的直觀,幫助學生理解數量關系,提高教學效率

用數形結合策略表示題中量與量之關系,可以達到化繁為簡、化難為易的目的。「數形結合」可以藉助簡單的圖形(如統計圖)、符號和文字所作的示意圖,促進學生形象思維和 抽象思維 的協調發展,溝通數學知識之間的聯系,從復雜的數量關系中凸顯最本質的特徵。它是小學數學教材的一個重要特點,更是解決問題時常用的方法。 眾所周知,學生從形象思維向抽象思維發展,一般來說需要藉助於直觀。

以數解形:有關圖形中往往蘊含著數量關系,特別是復雜的幾何形體可以用簡單的數量關系來表示。而我們也可以藉助代數的運算,常常可以將幾何圖形化難為易,表示為簡單的數量關系(如算式等),以獲得更多的知識面,簡單地說就是「以數解形」。它往往藉助於數的精確性來闡明形的某些屬性,表示形的特徵、形的求積計算等等,而有的老師在出示圖形時太過簡單,學生直接來觀察卻看不出個所以然,這時我們就需要給圖形賦予一定價值的問題。

助表象,發展學生的空間觀念,培養學生初步的 邏輯思維 能力。 兒童 的認識規律,一般來說是從直接感知到表象,再到形成科學概念的過程。表象介於感知和形成科學概念之間,抓住這中間環節,在幾何初步知識教學中,發展學生的空間觀念,培養初步的邏輯思維能力,具有十分重要意義。

數形結合,為建立函數思想打好基礎。小學數學中雖然沒有學習函數,但還是慢慢的開始滲透函數的思想。為初中數學學習打好基礎,如確實位置中,用數對表示平面圖形上的點,點的平移引起了了數對的變化,而數對變化也對應了不同的點。此外,在六年二期學習的比例中,讓學生通過描點連線來表示正比例函數的圖象,發現成只要是正比例關系的式子,畫在坐標圖中是就一條直線。從而體會到圖形與函數之間密不可分的關系。

3數形結合數學思想滲透方法

小學生都是從直觀、形象的圖形開始入門學習數學。從人類發展史來看,具體的事物是出現在抽象的文字、符號之前的,人類一開始用小石子,貝殼記事,慢慢的發展成為用形象的符號記事,最後才有了數字。這個過程和小學生學習數學的階段和過程有著很大的相似之處。一年級的小學生學習數學,也是從具體的物體開始認數,很多知識都是從具體形象逐步向抽象邏輯思維過渡,但這時的邏輯思維是初步的,且在很大程度上仍具有具體形象性。這方面的例子很多,如低年級開始學習認數、學習加減法、乘除法,到中年級的分數的初步認識、高年級的認識負數等都是以具體的事物或圖形為依據,學生根據已有的生活 經驗 ,在具體的表象中抽象出數,算理等等。

以形助數,揭示數量之間的關系,解決大量實際問題。如果說從圖形上抽象出符號,只能代表人們的認知事物的過程,還不能體現其在數學中的獨特作用。那麼以形助數,善於在圖形的分析中快捷地解決問題,思維層次不斷上升。這就充分體現了「數形結合」在小學數學中用處了。數形結合的思想方法將小學數學中一些抽象的代數問題給以形象化的原型,將復雜的代數問題賦予靈活變通的形式,從而給人們思維靈活性的思維遷移訓練,這正是反映了數形結合的思想方法解決數與代數問題的有效途徑所在。

數形結合,為建立函數思想打好基礎。

小學數學中雖然沒有學習函數,但還是慢慢的開始滲透函數的思想。為初中數學學習打好基礎,如確實位置中,用數對表示平面圖形上的點,點的平移引起了了數對的變化,而數對變化也對應了不同的點。此外,在六年二期學習的比例中,讓學生通過描點連線來表示正比例函數的圖象,發現成只要是正比例關系的式子,畫在坐標圖中是就一條直線。從而體會到圖形與函數之間密不可分的關系。

數形結合,其實質是將抽象的數學語言與直觀的圖形聯系起來,使抽象思維和形象思維結合起來,通過對圖形的處理,發揮直觀對抽象的支柱作用,揭示數和形之間的內在聯系,實現抽象概念和具體形象、表象之間的轉化,發展學生的思維。

4數形結合數學思想方法的作用

從新課程標准對「雙基」的要求來看數形結合思想。首先引用一下《數學新課程標准》對數學中的「雙基」的理解:教師應幫助學生理解和掌握數學基礎知識、基本技能,具體來說是:強調對基本概念和基本思想的理解和掌握。對一些核心概念和基本思想(如函數,空間觀念、運算、數形結合、向量、導數、統計、隨機觀念、演算法等)都要貫穿高中教學的始終,由於數學的高度抽象性,要注重體現概念的來龍去脈,在教學中要引導學生經歷從具體實例中抽象出數學概念的過程。

從新課程標准對思維能力的要求來看數形結合思想:數形結合思想能幫助學生樹立現代思維意識:第一通過數與形的有機結合,把形象思維與抽象思維有機地結合,盡可能地先形象後抽象,不但能促進這兩種思維能力同步發展,還為學生初步形成辯證思維能力創造了條件。第二通過數形結合,能夠有的放矢地幫助學生 從多角度、多層次出發地思考問題,養成多向性思維的好習慣。第三通過數形結合引導學生變靜態 思維方式 為動態思維方式,也就是以運動、變化、聯系的觀點考慮問題,更好地把握事情的本質。

從新課程數學內容的特點來看數形結合思想:數學,特別是現代形態下的數學,因其過於抽象,過於形式化、符號化而「不得人心」,它與人們的直覺經驗相距十萬八千里,給人一種「無感情」的面貌,加上它曲折而奧妙的邏輯推理,造成學生認知上的特殊難度,這也許是學生怕它,避開它的一個原因。然而在課堂教學中教師沒有能夠幫助學生擺脫這種由於數學自身的特點帶來的困境,還是過於呆板地強調著邏輯思維能力,在教學中忽視對直觀圖形的利用,不能很好地利用具體形象來化解對書本中一些抽象的結論的理解。忽視學生形象思維的培養。學生對於現在這種過於陳舊的課堂教學模式不能產生「親和感」,感到枯燥,厭惡,不少學生是為了高考而強迫自己去記憶一些內容,不能真正產生學習數學的動力。事實上教材中體現數形結合思想方法的內容很多,可以通過數形結合給代數提供幾何模型,形象直觀地揭示問題的本質,減輕學生學習的負擔,從而引發學生學習數學的興趣。

從高考題設計背景來看數形結合思想:先看一下前幾年全國高考試題中對數形結合思想考查的比例情況;(1)2002年(全國數學文科卷);有8小題(第1、4、5、7、10、11、14、16)和3大題(17、20、21)共84分,占卷面總公的面分為56%。(2)2003年(全國卷);有5個小題(第3、9、10、12、14)和5個大題(第17、18、19、20、21)共計86分,占卷面總公百分比為57.3%。(3)2004年(全國卷);有5個小題(第7、8、9、15、16)和2個大題(第19、22)題,共計49分,占卷面總分比為32%。



數形結合數學思想方法相關 文章 :

★ 高中數學四種思想方法

★ 高中數學思想方法

★ 高中數學思想與邏輯:11種數學思想方法總結與例題講解

★ 初三數學數形結合思想的運用

★ 高考數學題解法思想指引

★ 小學學習數學的17個思想方法

★ 提高數學成績的四個方法

★ 高中數學學習的思想和法則

★ 數學教學方法滲透六大核心素養

★ 數學思維訓練的學習方法

如何運用數形結合的方法求解等比數列的和

等比數列求和公式如下圖,

如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0),等比數列a1≠ 0。註:q=1 時,an為常數列。利用等比數列求和公式可以快速的計算出該數列的和。

求和公式推導

(1)Sn=a1+a2+a3+...+an(公比為q)

(2)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+an+a(n+1)

(3)Sn-q*Sn=(1-q)Sn=a1-a(n+1)

(4)a(n+1)=a1*q^n

(5)Sn=a1(1-q^n)/(1-q)(q≠1)

性質

①若 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;

等比數列的性質

②在等比數列中,依次每 k項之和仍成等比數列;

③若m、n、q∈N,且m+n=2q,則am×an=(aq)^2;

④ 若G是a、b的等比中項,則G^2=ab(G ≠ 0);

⑤在等比數列中,首項a1與公比q都不為零.

⑥在數列{an}中每隔k(k∈N*)取出一項,按原來順序排列,所得新數列仍為等比數列且公比為q^k+1

⑦數列{An}是等比數列,An=pn+q,則An+K=pn+K也是等比數列,在等比數列中,首項A1與公比q都不為零. 注意:上述公式中A^n表示A的n次方。 ⑧當數列{an}使各項都為正數的等比數列,數列{lgan}是lgq的等差數列。

㈤ 怎樣在小學數學教學中有效滲透數形結合思想方法

著名數學家華羅庚說過:「數缺形時少直觀,形少數時難入微,數形結合百般好,隔裂分家萬事休。」這句話形象、簡明、扼要地指出了數和形的相互依賴、相互制約的辯證關系。「數形結合」既是一種重要的數學思想,也是一種解決數學問題的有效方法。下面我就結合自己的教學實際談談小學數學課堂教學中應如何有效滲透數形結合的數學思想方法。
1 以形促思,在數的認識教學中,滲透數形結合思想方法,幫助學生很好地建立數感數感是一種主動、自覺或自動化的理解數和運用數的態度和意識,是對數學對象、材料直接迅速、正確敏感的感受能力。《數學課程標准》指出:「數感主要表現在理解數的意義;能用多種方法表示數。」例如教學《10 的認識》時,我請小朋友們認真觀察圖,從圖中你知道了什麼?讓學生利用數數的經驗上台現場數數後,學生明白10 個人、10 只鴿子都可以用數字10 表示。接著讓學生擺小棒操作,知道一捆就是1 個十,所以10 個1 是十。接著我讓學生找一找生活中哪些物體的個數可以用數字10 表示。最後讓「10」寶寶參加數字排隊隊,0~9這幾個數字寶寶已經按從小到大的順序排好隊了(出示尺子圖),10 應該排在哪兒?請計數器來幫忙。學生動手操作先拔8 顆,再添一顆是幾顆(使生能直觀感覺到9 比8 多1)?9 顆再添上一顆是幾顆?10 顆再去掉一顆是幾顆(使生感覺到10 比9 多1)?10 應該排在哪兒?回到尺子圖,讓生猜猜9 的後面是幾?請生分別按從小到大、從大到小的順序讀0~10 這幾個數字。在以上教學中,我巧妙滲透數形結合的思想方法,使學生在對具體數量的感知和體驗中,進一步強化了數感,加深了對數的意義的認識。
2 借形理解,在概念教學中,加強實驗操作,滲透數形結合思想方法,使學生直觀地理解概念數學概念是知識教學中的重要組成部分,在概念教學中,僅闡明其實際意義是不夠的,還應從事物的整體、本質和內在聯系出發,對概念進行進行全面分析,突出其本質屬性,但它的抽象性、枯燥性使得教學效果不盡如人意,學生學起來比較困難。藉助直觀的圖形、加強實驗操作可以將概念教學趣味化、形象化,從而幫助學生在輕松、愉快的學習氛圍中理解概念的形成過程。
例如:在《認識體積》的教學中,我通過3 個步驟滲透數形結合的思想方法,讓學生借形直觀地理解概念:2.1 通過實驗,使學生體會到物體是佔有空間的。教師出示兩個一樣的杯子,左邊的盛滿水,右邊的放了一個柑果。請同學們猜猜,如果把左邊杯子里的水倒入右邊的杯子,結果會怎樣?學生猜測,並通過實驗來驗證猜測是否是對的。學生倒水操作明白:原來兩個杯子裝的水是一樣多的,現在放進去一個柑果,杯中有一部分空間被柑果佔去了,能裝水的空間就少了。使學生體會到物體佔有一定的空間。
2.2 通過實驗,使學生體會到物體所佔的空間是有大有小的。出示兩個完全一樣的玻璃杯:一個杯子里放的是柑果,另一個杯子里放的是葡萄,如果往這兩個杯子里倒水,倒進哪個杯里的水會多一些?學生猜測並再次實驗操作,驗證猜想:兩個杯子能裝的水同樣多,柑果占的空間大,因而相應杯中的水就少;葡萄占的空間小,因而相應杯中的水就多。
2.3 揭示體積的含義。出示3 個大小不同的水果,這3 個水果,哪一個占的空間大?把它們放在同樣大的杯中,再倒滿水,哪個杯里水占的空間大?學生實驗操作,明確:物體是佔有空間的,一個物體越大,它佔有的空間就越大,反之,一個物體越小,它佔有的空間就越小。我們把物體所佔空間的大小叫做物體的體積。學生舉生活實例比較兩個物體體積的大小,認識體積,我通過三部教學,加強實驗操作,滲透數形結合思想方法,學生不僅借形直觀地理解概念,而且能夠應用概念。
3 看形想量,結合「量的計量」的教學滲透數形結合思想方法,幫助學生建立質量觀念數學的主要研究對象是數與形。但在現實生活中,數與形和量與計量總是密切聯系著的,學習數學必然要涉及量與計量。如何在量與計量中滲透數形結合呢?
例如《千克的認識》教學:①認識秤和秤面。觀察秤面從秤面上看到了什麼?②建立1 千克的質量觀念。a.掂一掂,初步體驗一千克的重量。分小組稱一稱2 袋鹽,通過觀察發規2 袋鹽重1 千克。b.猜一猜,再次體驗1 千克的重量。先猜一猜幾個這樣的蘋果、桔子、桃子重1 千克,最後稱一稱,數一數1 千克這樣的果到底有幾個?c.比一比,加深對一千克的認識。師出示一個重2 千克大米,讓幾名學生拎一拎,說說感覺,猜猜重多少千克,通過比較進一步加深對1 千克的體驗。
建立「千克」這個計量單位的觀念,對學生來說比較抽象,滲透數形結合的思想方法,學生就很容易建立「千克」的表象,並能運用。
4 看數畫形,在解決問題教學中,滲透數形結合思想方法,使解題過程具體化、明朗化數學家華羅庚曾說:「人們對數學早就產生了乾燥無味、神秘難懂的印象,成因之一便是脫離實際。」數形結合的思維方法,便是理論與實際的有機聯系,是思維的起點,是兒童建構數學模型的基本方法。
例如學生初步認識分數時,通過數形結合的對應思想,幫助學生構建了整體「1」與部分量之間的關系,在各種圖形的運用中,線段圖的使用顯得更為清晰方便,使學生能夠一目瞭然地獲取相關的信息和問題,直觀形象地了解到各信息與問題之間的數量關系。
氣象小組有12 人,攝影小組的人數是氣象小組的13 ,航模小組的人數是攝影小組的34 。航模小組有多少人?很多學生在讀完題後顯得較為迷茫,覺得有些混亂,不知道從何開始思考,這時我引導他們與老師一起嘗試用線段圖來表示三者之間的數量關系。
運用數形結合畫出圖形,幫助學生分析數量關系,揭示本質,有助於學生邏輯思維與形象思維協調發展,相互促進,提高學生的思維能力,而且有助於培養學生的創新思維和數學意識,並能正確解題。攝影小組:12×13=4(人),航模小組:4×43=3(人)。

5 看「數」想「形」,在幾何與圖形教學中,滲透數形結合思想方法,使學生的空間觀念得到培養在教學中我們都知道,雖然「形」有形象、直觀的優點,但在定量方面還必須藉助「數」來計算。
例如練習題:把一根長20 厘米,寬5 厘米,高3 厘米的長方體木料沿橫截面鋸成2 段,表面積增加多少?這樣的題目一出現,學生就無從下手,不知道應該怎樣計算?這時我就利用看「數」想「形」的數形結合思想,引導學生經歷三個空間觀念的建立解題過程:動手操作,畫出一個長方體,才長方體上切2 段,看看錶面積多了幾個面,多的這幾個面的面積合起來就是表面積增加的部分———教師實物操作,讓學生驗證自己所切的面是否與老師操作的一樣———抽象概括,使物體的整體模型印刻在腦海中,從而空間觀念在活動體驗中得到培養和形成。
6 數形結合、數形互用,學生的思維能力得到提升在實際教學中,數和形往往是緊密結合在一起,相互並存的。數形結合、數形互用往往會啟發學生展開發散思維。經過長期發散思維訓練的學生,解題方法多樣,思維靈活多變,往往能在發散的基礎上產生奇特的思路,從而使解法變得十分簡明扼要而且巧妙。
例如一年級上冊教材中有一道思考題:小朋友們排隊做操,小明的前面有8 個人,小明的後面也有8 個人,這一排一共有多少個人?
許多學生一看完題目就馬上列式:8+8=16 人,他們對小明是不是也在隊伍裡面弄不明白,所以出現了錯誤。針對這種情況,我就指導學生畫圖解決問題:□□□□□□□□ 小明□□□□□□□□8 + 1 + 8 =17 人這樣一畫圖,數形結合,數形互用,學生就一目瞭然,找出了自己出現錯誤的原因,能正確解答。
總之,在小學數學課堂教學中向學生有效滲地、巧妙地滲透並應用數形結合的數學思想方法,充分利用「一圖抵百語」的優勢,既能為小學數學教學開辟一片廣闊的天地,又能為學生的終身學習和可持續發展奠定扎實的基礎。

㈥ 睡能詳細解釋下數形結合思想

數形結合思想在高考中佔有非常重要的地位,其「數」與「形」結合,相互滲透,把代數式的精確刻劃與幾何圖形的直觀描述相結合,使代數問題、幾何問題相互轉化,使抽象思維和形象思維有機結合.應用數形結合思想,就是充分考查數學問題的條件和結論之間的內在聯系,既分析其代數意義又揭示其幾何意義,將數量關系和空間形式巧妙結合,來尋找解題思路,使問題得到解決.運用這一數學思想,要熟練掌握一些概念和運算的幾何意義及常見曲線的代數特徵.●難點磁場�1.曲線y=1+ (–2≤x≤2)與直線y=r(x–2)+4有兩個交點時,實數r的取值范圍 .2.設f(x)=x2–2ax+2,當x∈[–1,+∞)時,f(x)>a恆成立,求a的取值范圍.●案例探究�[例1]設A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x<sup>2</sup>,且x∈A },若C B,求實數a的取值范圍.命題意圖:本題藉助數形結合,考查有關集合關系運算的題目.屬★★★★級題目.知識依託:解決本題的關鍵是依靠一元二次函數在區間上的值域求法確定集合C.進而將C B用不等式這一數學語言加以轉化.錯解分析:考生在確定z=x2,x∈[–2,a]的值域是易出錯,不能分類而論.巧妙觀察圖象將是上策.不能漏掉a<–2這一種特殊情形.技巧與方法:解決集合問題首先看清元素究竟是什麼,然後再把集合語言「翻譯」為一般的數學語言,進而分析條件與結論特點,再將其轉化為圖形語言,利用數形結合的思想來解決.解:∵y=2x+3在[–2, a]上是增函數∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3}作出z=x2的圖象,該函數定義域右端點x=a有三種不同的位置情況如下:①當–2≤a≤0時,a2≤z≤4即C={z|z<sup>2</sup>≤z≤4}要使C B,必須且只須2a+3≥4得a≥ 與–2≤a<0矛盾.②當0≤a≤2時,0≤z≤4即C={z|0≤z≤4},要使C B,由圖可知:必須且只需 解得 ≤a≤2③當a>2時,0≤z≤a2,即C={z|0≤z≤a<sup>2</sup>},要使C B必須且只需解得2<a≤3④當a<–2時,A= 此時B=C= ,則C B成立.綜上所述,a的取值范圍是(–∞,–2)∪[ ,3].[例2]已知acosα+bsinα=c, acosβ+bsinβ=c(ab≠0,α–β≠kπ, k∈Z)求證:.命題意圖:本題主要考查數學代數式幾何意義的轉換能力.屬★★★★★級題目.知識依託:解決此題的關鍵在於由條件式的結構聯想到直線方程.進而由A、B兩點坐標特點知其在單位圓上.錯解分析:考生不易聯想到條件式的幾何意義,是為瓶頸之一.如何巧妙利用其幾何意義是為瓶頸之二.技巧與方法:善於發現條件的幾何意義,還要根據圖形的性質分析清楚結論的幾何意義,這樣才能巧用數形結合方法完成解題.證明:在平面直角坐標系中,點A(cosα,sinα)與點B(cosβ,sinβ)是直線l:ax+by=c與單位圓x2+y2=1的兩個交點如圖.從而:|AB|2=(cosα–cosβ)2+(sinα–sinβ)2=2–2cos(α–β)又∵單位圓的圓心到直線l的距離 由平面幾何知識知|OA|2–( |AB|)2=d2即∴ .●錦囊妙計�應用數形結合的思想,應注意以下數與形的轉化:(1)集合的運算及韋恩圖(2)函數及其圖象(3)數列通項及求和公式的函數特徵及函數圖象(4)方程(多指二元方程)及方程的曲線以形助數常用的有:藉助數軸;藉助函數圖象;藉助單位圓;藉助數式的結構特徵;藉助於解析幾何方法.以數助形常用的有:藉助於幾何軌跡所遵循的數量關系;藉助於運算結果與幾何定理的結合.●殲滅難點訓練�一、選擇題1.(★★★★)方程sin(x– )= x的實數解的個數是( )A.2 B.3 C.4 D.以上均不對2.(★★★★★)已知f(x)=(x–a)(x–b)–2(其中a<b ,且α、β是方程f(x)=0的兩根(α<β ,則實數a、b、α、β的大小關系為( )A.α<a<b<β B.α<a<β<bC.a<α<b<β D.a<α<β<b二、填空題3.(★★★★★)(4cosθ+3–2t)2+(3sinθ–1+2t)2,(θ、t為參數)的最大值是 .4.(★★★★★)已知集合A={x|5–x≥ },B={x|x<sup>2</sup>–ax≤x–a},當A B時,則a的取值范圍是 .三、解答題5.(★★★★)設關於x的方程sinx+ cosx+a=0在(0,π)內有相異解α、β.(1)求a的取值范圍;(2)求tan(α+β)的值.6.(★★★★)設A={(x,y)|y= ,a>0},B={(x,y)|(x–1)2+(y–3)2=a2,a>0},且A∩B≠ ,求a的最大值與最小值.7.(★★★★)已知A(1,1)為橢圓 =1內一點,F1為橢圓左焦點,P為橢圓上一動點.求|PF1|+|PA|的最大值和最小值.8.(★★★★★)把一個長、寬、高分別為25 cm、20 cm、5 cm的長方體木盒從一個正方形窗口穿過,那麼正方形窗口的邊長至少應為多少? 參 考 答 案●難點磁場1.解析:方程y=1+ 的曲線為半圓,y=r(x–2)+4為過(2,4)的直線.答案:( ]2.解法一:由f(x)>a,在[–1,+∞)上恆成立 x2–2ax+2–a>0在[–1,+∞)上恆成立.考查函數g(x)=x2–2ax+2–a的圖象在[–1,+∞]時位於x軸上方.如圖兩種情況:不等式的成立條件是:(1)Δ=4a2–4(2–a)<0 a∈(–2,1)(2) a∈(–3,–2 ,綜上所述a∈(–3,1).解法二:由f(x)>a x2+2>a(2x+1)令y1=x2+2,y2=a(2x+1),在同一坐標系中作出兩個函數的圖象.如圖滿足條件的直線l位於l1與l2之間,而直線l1、l2對應的a值(即直線的斜率)分別為1,–3,故直線l對應的a∈(–3,1).●殲滅難點訓練一、1.解析:在同一坐標系內作出y1=sin(x– )與y2= x的圖象如圖.答案:B2.解析:a,b是方程g(x)=(x–a)(x–b)=0的兩根,在同一坐標系中作出函數f(x)、g(x)的圖象如圖所示: 答案:A二、3.解析:聯想到距離公式,兩點坐標為A(4cosθ,3sinθ),B(2t–3,1–2t)點A的幾何圖形是橢圓,點B表示直線.考慮用點到直線的距離公式求解.答案: 4.解析:解得A={x|x≥9或x≤3},B={x|(x–a)(x–1)≤0},畫數軸可得.答案:a>3三、5.解:①作出y=sin(x+ )(x∈(0,π))及y=– 的圖象,知當|– |<1且– ≠時,曲線與直線有兩個交點,故a∈(–2,– )∪(– ,2).②把sinα+ cosα=–a,sinβ+ cosβ=–a相減得tan ,故tan(α+β)=3.6.解:∵集合A中的元素構成的圖形是以原點O為圓心, a為半徑的半圓;集合B中的元素是以點O′(1, )為圓心,a為半徑的圓.如圖所示∵A∩B≠ ,∴半圓O和圓O′有公共點.顯然當半圓O和圓O′外切時,a最小a+a=|OO′|=2,∴amin=2 –2當半圓O與圓O′內切時,半圓O的半徑最大,即 a最大.此時 a–a=|OO′|=2,∴amax=2 +2.7.解:由 可知a=3,b= ,c=2,左焦點F1(–2,0),右焦點F2(2,0).由橢圓定義,|PF1|=2a–|PF2|=6–|PF2|,∴|PF1|+|PA|=6–|PF2|+|PA|=6+|PA|–|PF2|如圖:由||PA|–|PF2||≤|AF2|= 知– ≤|PA|–|PF2|≤ .當P在AF2延長線上的P2處時,取右「=」號;當P在AF2的反向延長線的P1處時,取左「=」號.即|PA|–|PF2|的最大、最小值分別為 ,– .於是|PF1|+|PA|的最大值是6+ ,最小值是6– .8.解:本題實際上是求正方形窗口邊長最小值.由於長方體各個面中寬和高所在的面的邊長最小,所以應由這個面對稱地穿過窗口才能使正方形窗口邊長盡量地小.如圖:設AE=x,BE=y,則有AE=AH=CF=CG=x,BE=BF=DG=DH=y∴ ∴ .

㈦ 初中數學解題技巧及口訣 常用方法推薦

數學學習時間總是很緊張的,很多知識要點需要背誦,但是總是邊學邊忘,給很多同學造成困擾。下面我就大家整理一下初中數學解題技巧及口訣,僅供參考

有理數加法運算

同號兩數來相加,絕對值加不變號

異號相加大減小,大數決定和符號

互為相反數求和,結果是零須記好

【注】「大」減「小」是指絕對值的大小

解方程

已知未知鬧分離,分離要靠移完成

移加變減減變加,移乘變除除變乘

平方差公式

兩數和乘兩數差,等於兩數平方差

積化和差變兩項,完全平方不是它

配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是 數學 中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

填空題解題方法

直接法

直接法是解填空題最基本的方法,它要求同學們直接從題設條件出發,利用定義、定理、性質、公式等知識。通過推理和運算等過程,直接得到結果。

數形結合法

數形結合是一種重要的數學方法,它要求同學們在解題時,根據題目條件的具體特點,做出符合題意的圖形,從而做到數中想形,以形助數。

通過對圖像的觀察、分析和研究。啟發解題恩路,找出問題的隱含條件,從而簡化解題過程,檢驗解題結果。

以上就是我為大家整理的初中數學解題技巧及口訣。

㈧ 什麼是數形結合思想

數形結合思想是一種數學思想方法。數與形是數學中的兩個最古老,也是最基本的研究對象,它們在一定條件下可以相互轉化。中學數學研究的對象可分為數和形兩大部分,數與形是有聯系的,這個聯系稱之為數形結合,或形數結合。

數形結合的應用大致又可分為兩種情形:或者藉助於數的精確性來闡明形的某些屬性,或者藉助形的幾何直觀性來闡明數之間某種關系,即數形結合包括兩個方面:第一種情形是「以數解形」,而第二種情形是「以形助數」。「以數解形」就是有些圖形太過於簡單,直接觀察卻看不出什麼規律來,這時就需要給圖形賦值,如邊長、角度等。

基本思想是:我國著名數學家華羅庚曾說過:「數形結合百般好,隔裂分家萬事休。」「數」與「形」反映了事物兩個方面的屬性。數形結合,主要指的是數與形之間的一一對應關系。數形結合就是把抽象的數學語言、數量關系與直觀的幾何圖形、位置關系結合起來,通過「以形助數」或「以數解形」即通過抽象思維與形象思維的結合,可以使復雜問題簡單化,抽象問題具體化,從而實現優化解題途徑的目的。

(8)數形結合的技巧和方法擴展閱讀

數形結合應用要點

1、 數形結合是數學解題中常用的思想方法,數形結合的思想可以使某些抽象的數學問題直觀化、生動化,能夠變抽象思維為形象思維,有助於把握數學問題的本質;另外,由於使用了數形結合的方法,很多問題便迎刃而解,且解法簡捷。

2、 所謂數形結合,就是根據數與形之間的對應關系,通過數與形的相互轉化來解決數學問題的思想,實現數形結合 。

3、縱觀多年來的高考試題,巧妙運用數形結合的思想方法解決一些抽象的數學問題,可起到事半功倍的效果,數形結合的重點是研究「以形助數」。

4、數形結合的思想方法應用廣泛,常見的如在解方程和解不等式問題中,在求函數的值域、最值問題中,在求復數和三角函數解題中,運用數形結思想,不僅直觀易發現解題途徑,而且能避免復雜的計算與推理,大大簡化了解題過程。這在解選擇題、填空題中更顯其優越,要注意培養這種思想意識,要爭取胸中有圖見數想圖,以開拓自己的思維視野。

5、數形結合思想的論文:數形結合思想簡而言之就是把數學中「數」和數學中「形」結合起來解決數學問題的一種數學思想。數形結合具體地說就是將抽象數學語言與直觀圖形結合起來,使抽象思維與形象思維結合起來,通過「數」與「形」之間的對應和轉換來解決數學問題。在中學數學的解題中,主要有三種類型:以「數」化「形」、以「形」變「數」和「數」「形」結合。

參考資料來源:網路-數形結合

㈨ 探討有理數運演算法則,怎樣運用數形結合的方法

數形結合思想就是通過數和形之間的對應關系和相互轉化來解決問題的思想方法。數學是研究現實世界的數量關系與空間形式的科學,數和形之間是既對立又統一的關系,在一定的條件下可以相互轉化。這里的數是指數、代數式、方程、函數、數量關系式等,這里的形是指幾何圖形和函數圖象。在數學的發展史上,直角坐標系的出現給幾何的研究帶來了新的工具,直角坐標系與幾何圖形相結合,也就是把幾何圖形放在坐標平面上,使得幾何圖形上的每個點都可以用直角坐標系裡的坐標(有序實數對)來表示,這樣可以用代數的量化的運算的方法來研究圖形的性質,堪稱數形結合的完美體現。數形結合思想的核心應是代數與幾何的對立統一和完美結合,就是要善於把握什麼時候運用代數方法解決幾何問題是最佳的、什麼時候運用幾何方法解決代數問題是最佳的。如解決不等式和函數問題有時用圖象解決非常簡捷,幾何證明問題在初中是難點,到高中運用解析幾何的代數方法有時就比較簡便。

㈩ 做數學題的方法和技巧

中小學數學,還包括思維數學,在學習方面要求方法適宜,有了好的方法和思路,可能會事半功倍!那有哪些方法可以依據呢?文都教育建議家長們,培養孩子從小就習慣用這些思維和方法來解題!

形象思維方法

形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。

形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。

實物演示法

利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。

這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。

二年級數學教材中,「三個小朋友見面握手,每兩人握一次,共要握幾次手」與「用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數」。像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的。

特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴於實物演示作思維的基礎。

所以,小學數學教師應盡可能多地製作一些數學教(學)具,而且這些教(學)具用過後要好好保存,可以重復使用。這樣可以有效地提高課堂教學效率,提升學生的學習成績。

圖示法

藉助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。

圖示法直觀可靠,便於分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴於人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想像出現謬誤或走入誤區,最後導致錯誤的結果。比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解。

在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。

列表法

運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便於分析比較、提示規律,也有利於記憶。它的局限性在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關。比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」。

用列表法解決傳統數學問題:雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。

探索法

按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。

第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。

第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。

第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。

觀察法

通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」

小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。

如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出

乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。

「觀察」的要求:

第一、觀察要細致、准確。

第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。

驗證法

你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。

驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。

(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。

(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。

(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)

按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。

(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。

抽象思維方法

運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維。

抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。

形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。

辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。

小學、中學數學要培養學生初步的抽象思維能力,重點突出在:

(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。

(2)思維方法上,應該學會有條有理,有根有據地思考。

(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。

(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地

推理。

對照法

如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。

公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

比較法要注意:

(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

(2)找聯系與區別,這是比較的實質。

(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。

(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。

(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

排除法

排除對立的結果叫做排除法。

排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。

解題技巧

選擇題答題攻略

1、剔除法

利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。

2、特殊值檢驗法

對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

3、極端性原則

將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,採用極端性去分析,就能瞬間解決問題。

4、順推破解法

利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。

5、逆推驗證法

將選項代入題干進行驗證,從而否定錯誤選項而得出正確答案的方法。

6、正難則反法

從題的正面解決比較難時,可從選項出發逐步逆推找出符合條件的結論,或從反面出發得出結論。

7、數形結合法

由題目條件,做出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。

8、遞推歸納法

通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。

9、特徵分析法

對題設和選擇項的特點進行分析,發現規律,歸納得出正確判斷的方法。

10、估值選擇法

有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。

填空題答題攻略

數學填空題,絕大多數是計算型(尤其是推理計算型)和概念(性質)判斷型的試題,應答時必須按規則進行切實的計算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在「准」、「巧」、「快」上下功夫。常用的方法有直接法、特殊化法、數行結合法、等價轉化法等。

1、直接法

這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。

2、特殊化法

當填空題的結論唯一或其值為定值時,我們只須把題中的參變數用特殊值(或特殊函數、特殊角、特殊數列、圖形特殊位置、特殊點、特殊方程、特殊模型等)代替之,即可得到結論。

3、數形結合法

藉助圖形的直觀形,通過數形結合,迅速作出判斷的方法稱為圖像法。文氏圖、三角函數線、函數的圖像及方程的曲線等,都是常用的圖形。

4、等價轉化法

通過「化復雜為簡單、化陌生為熟悉」,將問題等價地轉化成便於解決的問題,從而得出正確的結果。

閱讀全文

與數形結合的技巧和方法相關的資料

熱點內容
bod5分析方法名稱 瀏覽:255
小米5無線顯示在哪裡設置方法 瀏覽:445
燉汆悶屬於什麼加熱方法 瀏覽:209
激光方法治療胃息肉有沒有傷口 瀏覽:571
一個人轉移注意力的方法有哪些 瀏覽:211
魚缸除油膜最簡單的方法 瀏覽:440
咳嗽小便失禁鍛煉方法 瀏覽:904
簡單做魚方法 瀏覽:104
大小臉自我矯正方法圖片集 瀏覽:80
從台賬中快速抓取數據的方法 瀏覽:785
高血壓的剁遼方法有哪些 瀏覽:95
幼兒心理發展研究最基本的方法 瀏覽:51
商業研究方法和人力資源管理問題 瀏覽:247
帆布包變黃有什麼方法解決 瀏覽:786
輕感冒怎麼辦速效方法 瀏覽:10
焦油含量檢測方法 瀏覽:290
草酸用什麼方法能夠去掉 瀏覽:225
紅參原液的使用方法 瀏覽:1003
用電腦鍵盤關機操作方法 瀏覽:741
牛皮癬運動治療方法有哪些 瀏覽:506