1. 快速口算的方法是什麼
一、一種做多位乘法不用豎式的方法。我們都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?這時候,大家一般都會用豎式,通過豎式計算,得數是132、156、168。其中有趣的規律:即個位上的數字正好是兩個因數個位數字的積。十位上的數字是兩個數字個位上的和。百位上的數字是兩個因數十位數字的積。例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有進位怎麼辦呢?這個定律對有進位的情況同樣適用,在豎式時只要~滿幾時,就向下一位進幾。~例如:
14X16=224 4=4X6的個位 2=2+4+6 2=1+1X1 試著做做看下面的題:
12X15= 11X13= 15X18= 17X19=二、幾十一乘以幾十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 這些算式有什麼特點呢?是「幾十一乘以幾十一」的乘法算式,我們可以用:先寫十位積,再寫十位和(和滿10 進1),後寫個位積。「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」就是一見到幾十一乘以幾十一的乘法算式,如果十位數的和是一位數,我們先直接寫十位數的積,再接著寫十位數的和,最後寫上1 就一定正確;如果十位數的和是兩位數,我們先直接寫十位數的積加1 的和,再接著寫十位數的和的個位數,最後寫一個1 就一定正確。我們來看兩個算式:21×61=41×91= 用「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」這種速算方法直接寫得數時的思維過程。第一個算式,21×61=?思維過程是:2×6=12,2+6=8, 21×61 就等於1281。第二個算式,41×91=?思維過程是:4×9=36,4+9=13,36+1=37, 41×91 就等於3731。 試試上面題目吧!然後再看看下面幾題 61×91= 81×81= 31×71= 51×41=一、10-20的兩位數乘法及乘方速算方法:尾數相乘,被乘數加上乘數的尾數(滿十進位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾數相乘2X3=6 (2)被乘數加上乘數的尾數12+3=15 (3)把兩計算結果相連即為所求結果【例2】 1 5X 1 5------------2 2 5(1)尾數相乘5X5=25(滿十進位)(2)被乘數加上乘數的尾數15+5=20,再加上個位進上的2即20+2=22(3)把兩計算結果相連即為所求結果二、兩位數、三位數乘法及乘方速算a.首數相同,尾數相加和是十的兩位數乘法 方法:尾數相乘,首數加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾數相乘4X6=24直接寫在十位和個位上(2)首數5加上1為6,兩首數相乘6X5=30(3)把兩結果相連即為所求結果【例2】 7 5X 7 5----------5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數7加上1為8,兩首數相乘8X7=56(3)把兩計算結果相連即可b.尾數是5的三位數乘方速算方法:尾數相乘,十位數加一,再將兩首數相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數12加上1為13,再兩數相乘13X12=156(3)兩計算結果相連c.任意兩位數乘法方法:尾數相乘,對角相乘再相加,首數相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾數相乘7X2=14(滿十進位)(2)對角相乘3X2=6;7X6=42,兩積相加6+42=48(滿十進位)(3)首數相乘3X6=18加上十位進上的4為18+4=22(4)把計算結果相連即為所求結果b.任意兩位數及三位平方速算方法:尾數的平方,首數乘尾數擴大2倍,首數的平方[例] 2 3X 2 3---------5 2 9 (1)尾數的平方3X3=9(滿十進位)(2)首尾數相乘2X3=6擴大兩倍為12寫在十位上(滿十進位)(3)首數的平方2X2=4加上十位進上的1為5(4)把計算結果相連即為所求結果c.三位數的平方與兩位數的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾數的平方2X2=4寫在個位(2)首尾數相乘13X2=26擴大2倍為52寫在個位上(滿十進位)(3)首數的平方13X13=169加上十位進上的5為174(4)把計算結果相連即為所求結果〖注意:三位數的首數指前兩位數字!〗三、大數的平方速算方法:把題目與100相差,相差數稱之為差數;先算差數的平方寫在個位和十位上(缺位補零),再用題目減去差數得一結果;最後把兩結果相連即為所求結果【例】 9 4X 9 4-----------8 8 3 6(1)94與100相差為6(2)差數6的平方36寫在個位和十位上(3)用94減去差數6為88寫在百位和千位上(4)把計算結果相連即為所求結果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能夠很快算出這些算式的正確答案嗎?注意,是很快哦!你能嗎?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神氣吧!速算秘訣:(就以第一題為例好啦)(1)分別取兩個數的第一位,而後一個的要加上一以後,相乘。[5×(5+1)]=30;(2)再將末尾數相乘的得數寫在後面就可以得出正確的答案了。5×5=25;(3)3025!Bingo!其它依次類推就行了。仔細看每一個式子里的兩位數的十位是相同的,而個位的兩數則是相補的。這樣的速算秘訣只能夠適用於這種情況的算式。所以說大家千萬不要把巧算和真正的速算混淆在一起,真正的速算是任何數都能算的。一、關於9的數學速算技巧(兩位數乘法)
關於9的口訣:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81從上面的口訣口有沒有看到從1到9任何一個數和9相乘的積,個位數和十位數的和還是等於9。
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我們再做一些復雜一點的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
關於兩位數的乘法,上面的題目中,前面的乘數都是9的倍數,而且個位和十位的和都等於9。
這樣我們能不能找到一種簡便的演算法呢?也就是把兩位數的乘法變成一位數的乘法呢?
我們先把上面這些數變一變。
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我們再把上面的數變一變
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
當然如果知道口訣你們可以直接把18 = 2 × 9同樣的方法你們可以拆出下面的數,也可以背口訣27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
為了找到計算上面問題的方法,我們把上面的式子再變一次。
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
現在我們來算上面的問題:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
這樣就有了
18 × 12 = 2 × 108 = 216
是不是把一個兩位數的乘法變成了一位數的乘法?
而且可以通過口算就得出結果?我用這種方法教威威算乘法,他只需要我算這一個,後邊的題目就自己會算了。
上面我們的計算好象很麻煩,其實現在總結一下就簡單了。
看下一個題目:
27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)
= 3 × 108 = 324
36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)
= 4 × 108 = 432發現什麼規律沒有?下面的題目好象不用算了,都是把前面的數加1再乘108
45 × 12 = 5 × 108 = 540
54 × 12 = 6 × 108 = 648
63 × 12 = 7 × 108 = 756
72 × 12 = 8 × 108 = 864
81 × 12 = 9 × 108 = 972
我們再看看上面的計算結果,發現什麼了嗎?
我們把一個兩位數乘法變成了一位數的乘法。其中一個乘數的個位和十位的和等於9,這樣變化以後的數中一位數的那個乘數,都是正好比前面的乘數大1。
而後面的一個兩位數也有一個特點,就是一個連續數(12),1和2是連續的。
能不能找到一種更簡便的計算方法呢?
為了找到一種更簡便的演算法。我在這里引入一個新的名詞——補數。
什麼是補數呢?
1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;
6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;
從上面的幾個加法可見,如果兩個數的和等於10,那麼這兩個數就互為補數。
也就是說1和9為補數,2和8為補數,3和7為補數,4和6為補數,5的補數還是5就不用記了,只要記4個就行了。
現在我們再看看上面的計算結果:
拿一個 63 × 12 = 7 × 108 = 756 舉例吧
結果的最前面一個數是7(不用管它是什麼位),是不是正好等於第一個乘數(63)中前面的數加1? 6 + 1 = 7
結果的後兩位怎麼算出來的呢?如果拿這個7去乘後面那個乘數(12)的最後一位的補數(8)會是什麼?7 × 8 = 56
呵呵,我們現在不用再分解了,只要把第一個乘數(63)中前面的數加1就是結果的最前面的數,再把這個數乘以後面那個乘數(12)的最後一位的補數(8)就得到結果的後兩位。
這樣行嗎?如果行的話,那可真是太快了,真的是速算了。
試一試其他的題:
18 × 12 =
第一個乘數(18)的前面的數加1:1 + 1 =2 ——結果最前面的數
拿2去乘第二個乘數(12)的後面的數(2)的補數(8):2×8=16
結果就是 216。看一看上面對嗎?
27 × 12 =
結果最前面的數——2 + 1 =3
結果最後面的數——3 ×8 = 24
結果 324
36 × 12 =
結果最前面的數——3 + 1 =4
結果最後面的數——4 ×8 = 32
結果 432
45 × 12 =
結果最前面的數——4 + 1 =5
結果最後面的數——5 ×8 = 40
結果 540
54 × 12 =
結果最前面的數——5 + 1 =6
結果最後面的數——6 ×8 = 48
結果 648
63 × 12 =
結果最前面的數——6 + 1 =7
結果最後面的數——7 ×8 = 56
結果 756
72 × 12 =
結果最前面的數——7 + 1 =8
結果最後面的數——8 ×8 = 64
結果 864
81 × 12 =
結果最前面的數——8 + 1 =9
結果最後面的數——9 ×8 = 72
結果 972
計算結果是不是和上面的方法一樣?從結果中還能看出什麼?
是不是計算結果的三位數的和還是等於9或者是9的倍數?
自己算一下看是不是?
看我這篇文章,下面我給你們出幾個題,看你們掌握了方法沒有。
54 × 34 = ? 18 × 78 = ? 36 × 56 = ?
72 × 89 = ? 45 × 67 = ? 27 × 45 = ? 81 × 23 = ?
上面的題目如果再擴展一下,把後面的連續數擴大到多位數。
如:123、234、345、2345、34567、123456、23456789等等
看一看有沒有什麼運算規律,或許你們都能找出快速的計算方法。
如果能的話,象
63 × 2345678 =
這樣的題目你們用口算就能快速計算出結果來。
2. 怎麼口算比較快
提高口算速度的方法:
1、重視培養孩子說算理,要提高孩子的口算能力,要重視培養孩子會說算理,這樣有利於理解算理,掌握口算方法,進而提高口算能力;
2、加強口算的基本訓練,要提高口算能力,必須抓好口算的基本訓練,做的多了,反應就快,正確率就高,反之,反應慢,准確率就低;
3、持之以恆地訓練,口算能力的培養不是一朝一夕可以達到的,需要長期不懈地、有計劃的進行;
4、按一定速度要求訓練,口算能力表現在正確、迅速上,正確是第一位,但速度也很重要,一定的速度能反映出口算能力的高低,同時也能間接地反映孩子思維是否敏捷、靈活;
5、適當介紹一些口算方法,好的演算法,是提高口算能力的催化劑;
6、想方設法提高孩子口算的興趣,讓孩子們喜歡、感興趣對於孩子們練好口算是很重要的;
7、要求孩子不僅要算的快還要寫得快。
3. 什麼樣的口算方法又快又准
印度的九九乘法表是從1 背到19(→19×19乘法? ),
不過您知道印度人是怎麼記 11到19 的數字嗎?
我是看了下面這本書之後才恍然大悟的。 「印度式計算訓練」 2007年 6月 10日第一版第 6 刷發行株式會社晉游社發售。該書介紹了加減乘除的各種快速計算方法。不過在這里我只介紹印度的九九乘法。因為實在太神奇了!!下面的數字跟說明都是引用該書P.44 的例子。
請試著用心算算出下面的答案:
13 X 12 = ?
( 被乘數) (乘數 )
印度人是這樣算的。
****************************************************************************
第一步:
先把(13)跟乘數的個位數 (2)加起來
13 + 2 = 15
第二步:
然後把第一步的答案乘以10(→也就是說後面加個 0 )
第三步:
再把被乘數的個位數(3)乘以乘數的個位數 (2)
2 X 3 = 6
(13+2)x10 + 6 = 156
****************************************************************************
就這樣,用心算就可以很快地算出11X11 到19X19了喔。這真是太神奇了!
我們試著演算一下
14×13:
(1)14+3=17
(2)17×10=170
(3)4×3=12
(4)170+12=182
16×17:
(1)16+7=23
(2)23×10=230
(3)6×7=42
(4)230+42=272
真的是耶,好簡單喔 !
怎不早點讓我知道呢 ?
有趣的是善舞銀蛇還發現此演算法只要對第二步稍作改變,就能演算19×19乘法以上的十位數相同的任意十位數,(第二步:把第一步的答案乘以10,改變為乘以被乘數和乘數相同的十位數。)此演算如被乘數和乘數的十位數不相同則不成立。
更有趣的是只要被乘數和乘教的十位數以上的數都相同,就能用同樣方法演算。
我們試著演算一下
23 X 22 = ?
( 被乘數) (乘數 )
第一步:
先把(23)跟乘數的個位數 (2)加起來
23 + 2 = 25
第二步:
然後把第一步的答案乘以20(→也就是說後面加個 0 )
第三步:
再把被乘數的個位數(3)乘以乘數的個位數 (2)
2 X 3 = 6
(23+2)x20 + 6 = 506
我們試著再演算一下
54×53:
(1)54+3=57
(2)57×50=2850
(3)4×3=12
(4)2850+12=2862
76×77:
(1)76+7=83
(2)83×70=5810
(3)6×7=42
(4)5810+42=5852
854×853
(1)854+3=857
(2 )857×850=728450
(3)4×3=12
(4)728450+12=728462
4. 怎樣口算又快又准求最快速的方法。
補數學
5. 10以內快速口算技巧
是以內的加減法,沒有什麼技巧,只不過是讓孩子把東西背熟了就可以了
6. 如何快速的口算開方,及其竅門
把常用的背下來啊
7. 三年級數學快速口算方法
只要熟練掌握計演算法則和運算順序,根據題目本身的特點,使用合理、靈活的計算方法,化繁為簡,化難為易,就能算得又快又准確。先為大家介紹5個速算技巧:
1. 方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 方法二:結合律法
加括弧法
(1)在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括弧法
(1)在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 方法三:乘法分配律法
分配法
括弧里是加或減運算,與另一個數相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因數的提取。
例如:
9×8+9×2=9×(8+2)
4. 方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦,有借有還,再借不難嘛。
例如:
99+9=(100-1)+(10-1)
5. 方法五:拆分法
拆分法就是為了方便計算,把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
要想讓孩子熟練運用速算方法,需要通過持之以恆的練習,提升計算能力,這樣,無論平時做作業還是考試都能游刃有餘。
建議家長每天抽出5分鍾時間,幫助孩子進行口算練習,培養孩子快速、准確口算的能力。在練習過程中,也要記錄好用時,做完後馬上核對正誤,並分析做錯的原因。
8. 口算快而准有什麼技巧嗎
算,就是心記乘法豎式. 你在紙上怎麼寫的,就怎麼記.
另外背熟乘法口訣.(這里的「背熟」意思是理清它們與各數相乘的規律)
如:93^2. =93*3+93*90. 這個數只有相同的9和3相乘,所以此式的積有3的進1,有0,就有1個9,有9就必有8,3與9必有6.
根據各個位數與各個位數的乘法關系,所以此式得8649.
有一種個位是5的平方演算法: 15*15的,用第一個15的十位數的1加上1,就等於2,再乘另一個數的十位數,即2*1=2,答案就等於225 25*25的,同樣(2+1)*2=6,答案就等於625 95*95的,(9+1)*9=90,答案就等於9025.
任何兩位數乘以11,都可以用這個口訣:兩頭一拉,中間一加,滿十進一
比如:12*11=132 13*11=143.23*11=253 37*11=407
1、兩個相同因數積的口演算法;(平方口演算法)
(1)、基本數與差數之和口演算法:
基本數:這個數各位分別平方後,組成一個新的數稱基本數。十位平方為基本數百位以上的數,個位平方為基本數十位和個位數,十位無數用零佔位。
差數:這個數十位和個位的積再乘20稱差數。
基本數 + 差數 = 這兩個相同因數的積。
例1、13×13
基本數:百位:1×1=1
十位:用0佔位
個位:3×3=9
所以基本數就是 109
差數:1×3×20=60
基本數 + 差數 = 109 + 60 = 169
所以13×13=169
例2、67×67
基本數:百位以上數字是 6×6=36
十位和個位數字是7×7=49
所以基本數是 3649
差數:6×7×20=840
基本數+差數=3649+840=4489
所以:67×67 = 4489
(2)三步到位法
思維過程:
第一步:把這個數個位平方。得出的數,個位作為積的個位,十位保留。
第二步:把這個數個位和十位相乘,再乘2,然後加上第一步保留的數,所得的數的個位就是積的十位數,十位保留。
第三步:把這個數十位平方,加上第二步保留的數,就是積的百位、千位數。
例1、24×24
第一步:4×4=16 「1」保留,「6」就是積的個位數。
第二步:4×2×2+1=17 「1」保留,「7」就是積的十位數。
第三步 :2×2+1=5 「 5」就是積的百位數.
所以24×24=576
例二、37×37
第一步:7×7=49 "4"保留,"9",就是積的個位數。
第二步:3×7×2+4=46 "4"保留,"6",就是積的十位數。
第三步 :3×3+4=13 "13"就是積的百位和千位數字。
所以:37×37=1369
(3)、接近50兩個相同因數積的口算
思維方法:比50大的兩個相同數的積等於5乘5加上個位數字,再添上個位數字的平方,(必須占兩位,十位無數用零佔位):比50小的兩個相同數的積,等於5乘5減去個位數字的十補數,再添上個位數字十補數的平方(必須占兩位,十位無數用零佔位)。
例1、53×53
5×5+3=28 再添上3×3=9 (必須兩位09) 等於2809
所以:53×53=2809
例2、58×58
5×5+8=33 再添上8×8=64 等於3364
所以:58×58=3364
例3、47×47
5×5-3(3是7的十補數)=22 再添上3×3=9 (必須兩位09)
等於2209
所以:47×47=2209
(4)、末位是5的兩個相同因數積的口算
思維方法:設這個數的十位數字為K,則這兩個相同因數的積就是:K×(K+1)再添上5×5=25 或者 K×(K+1)×100+25
例 1、 35×35=3×(4+1)×100+25=1225
例2、75×75=7×(7+1)×100+25=5625
兩個相同因數積的口算方法很多,這里就不一一介紹了。我們利用兩個相同因數積的口算方法可以口算好多相近的兩個數的積。舉例如下:
例1、13×14
因為:13×13=169 再加13得182 所以 :13×14=182
或者14×14 因為:14×14=196 再減14 還 得182
例2、35×37
因為:35×35=1225 再加70(2×35)得1295
所以 35×37=1295
2、首尾有規律的數的口算
(1)首同尾合十(首同尾補)
思維方法:首數加「1」乘以首數,右邊添上尾數的積(兩位數),如積是一位數,十位用零佔位。
例:76×74=(7+1)×7×100+6×4=5624
(2)尾同首合十(尾同首補)
思維方法:首數相乘加尾數,右邊添上尾數的平方(兩位數),如積是一位數,十位用零佔位。
例:76×36=(7×3+6)×100+6×6=2736
(3)一同一合十(一個數兩位數字相同,一個數兩位數字互補)
思維方法:兩個數的十位數字相乘,再加上相同數字,右邊添上兩尾數的積。如積是一位數,十位用零佔位。
例:33×64=(3×6+3)×100+3×4=2112
以上三種方法,可以用一個公式計算即:
(頭×頭+同)×100 + 尾×尾
3、利用特殊數字相乘口算
有些數字很特殊,它們的積是有規律的。
(1)7乘3的倍數或3乘7的倍數
先看看下面的幾個式子:
7×3=21 7×6=42 7×9=63
7×12=84 7×15=105 7×18=126.7×27=189
我們觀察這幾個式子被乘數都是7,乘數是3的倍數.是3的幾倍,積的個位就是幾,積的十位或者十位以上的數字始終是個位的2倍.
因此,我們可以說:7乘3的倍數,等於該倍數加該倍數的20倍.
果我們設這個倍數為N,用公式表示:7×3N=N+20N(N>0的正整如數)
例1、7×27=7×3×9=9+20×9=189
例2、7×57=7×3×19=19+20×19=398
這個結論3乘7的倍數也適用.我們用這個結論可以口算3的倍數和7的倍數的兩個數相乘.
例3、14×15=7×2×3×5=7×3×10=10+20×10=210
例4、28×36=7×4×3×12=7×3×48=48+20×48=1008
(2)、17乘3的倍數或3乘17的倍數
17乘3的倍數,等於該倍數加該倍數的50倍.(3乘17的倍數也適用)
如果我們設這個倍數為N,用公式表示:17×3N=N+50N(N>0的正整數)
例1、17×21=17×3×7=7+50×7=357
例2、17×84=17×3×28=28+50×28=1428
例3、34×24=17×2×3×8=17×3×16=16+50×16=816
(3)、17乘13的倍數或13乘17的倍數
17乘13的倍數等於該倍數加該倍數的20倍,再加200倍。
如果我們設這個倍數為N,用公式表示:17×13N=N+20N+200N(N>0的正整數)
例1、17×78=17×13×6=6+20×6+200×6=1326
例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10
=2210
例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12
=2652
(4)43乘7的倍數或7乘43的倍數
43乘7的倍數等於該倍數加該倍數的300倍。
如果我們設這個倍數為N,用公式表示:43×7N=N+300N(N>0的正整數)
例1、43×28=43×7×4=4+300×4=1204
例2、43×84=43×7×12=12+300×12=3612
4、兩個接近100的數相乘的口算
(1)超過100的兩個數相乘
思維方法:先把一個因數加上另一個因數與100的差,然後在所得的結果後面添上兩個因數分別與100之差的積。
例1、103×104=(103+4)×100+3×4=10712
例2、112×107=(112+7)×100+12×7=11984
(2)不足100的兩個數相乘
思維方法:先從一個因數中減去另一個因數與100的差,然後在所得的結果後面添上兩個因數分別與100之差的積。
例1、92×94=(92-6)×100+8×6=8648
或者:92×94=(94-8)×100+8×6=8648
(3)一個超過100,一個不足100的兩個數相乘
思維方法:超過100的數減不足100的差,擴大100倍後,減去兩個因數分別與100之差的積。
例1、104×97=(104-3)×100-4×3=10100-12=10088
口算的技巧太多了。以上僅介紹了部分特殊口算技巧,還有利用運算定律和運算性質可以口算;利用湊整法可以口算等等。
9. 怎樣做口算快
題一:怎樣提高孩子的口算速度。
第一個方法:每天做最少30道口算題,絕不能中斷。我給孩子買得口算題卡,一頁30道,每天一頁,開始速度很慢,千萬別著急,但再慢我也給他記時,今天比昨天快1秒對孩子也是進步。一個半月後達到每天60道,兩個月後每天90道,兩個半月後120道,三個月後每天150道到180道。
第二個方法:每天念兩遍加法或減法表,是很枯燥的事,我家孩子有時偷懶少念一遍我也當沒看到,但很有效,使孩子計算成為一種直覺,當有這種直覺時,速度會突飛猛進的。
第三個方法:當學開進退位(20以內加減法),10以內的加減口算應該達到1分鍾50道題,因為進退位是孩子的一個瓶頸,這時孩子做題又會很慢,而且會失去信心,要鼓勵他,而且要幫他總結一些方法,比如:和9相加的數進位減1快速得出答案8+9=(8-1=7)所以17,和8相加的數進位減2等。退位減法是比較難的,我的經驗是讓孩子形成直覺,而且是一個數重復練習,如媽媽對寶寶提問15-8=?,15-7=?再重復,大概30次以上(兩三天時間,一天連續15次)孩子就會記得非常牢固,當然這對媽媽來說很枯燥的。但一段時間後成績非常明顯。
問題二:如何提高孩子的口算能力,提高口算速度 淺談提高口算能力的幾點體會本學期初,接到教研室通知,一年級小朋友20以內加減法口算,要求達到每分鍾12—15道,過關率為90%。而教科書上要求:單元結束時,絕大多數學生達到每分鍾8題,期末時,絕大多數達到每分鍾10題。當時我就犯傻了,這怎麼可能達到呢?但是經過努力,事實證明是可能的。3月底,學校摸底時,我班平均水平已達到每分鍾16道;5月底,區教研室錢老師親自到我校,對一年級20以內加減法進行口算測試,結果過關率超過90%,且有好多小朋友每分鍾超過了20道。那麼我是如何去提高學生的口算能力呢?下面談談提高學生口算能力的膚淺體會:
一、加強直觀操作,幫助學生建立表象一年級學生的思維活動以具體形象思維為主要形式,是一個從直接感知實物過渡到表象的思維過程。因此,從認識10以內的數開始,我就十分注重直觀教學:課前准備好學生平時喜愛的實物、圖片,課堂上多讓學生數一數小棒,數一數圖片,數一數手指,幫助學生強化數感。然後進行分一分,合一合的訓練,幫助學生建立表象。從而使學生在掌握10以內各數的同時,為口算10以內數的組成與分解打好扎實的基礎。再通過分一分、合一合的直觀操作活動建立表象,掌握10以內數的組成和分解,熟練地口算10以內加減法,為學習20以內的加減法打好了堅實的基礎。
二、注重算理教學,加快口算速度在口算教學中,讓學生有效地掌握口算的基本方法的主要途徑是教學生理解算理,因此在教學時,我十分重視算理教學。如在教學20以內的退位減法時,出示16-7,不要急於把現成的「破十減」灌輸給學生,而要站在學生的角度審視問題。讓學生用自己喜歡的方法探求解決問題的方法,有的學生會擺一擺學具,找出答案「我是這樣想的,先算10-7=3,再算3+6=9。」;「我是這樣想的,先算16-6=10,再算10-1=9。」有的學生用扳手指數數,「我是這樣想的,把16記在腦子里,伸出7個手指頭,從16開始,一邊屈指一邊數,15、14……結果是9。」有的用「做減想加」來計算,「因為9+7=16,所以16-7=9」;通過說理訓練,方法活了,口算速度也加快了。
三、注重演算法多樣化,實現學生對演算法的自主優化。由於學生生活背景和思考角度不同,所使用的方法必然是多樣的。在教學20以內退位減法時,有些學生喜歡用「破十減」、有些喜歡用「做減想加」。這時,在體會演算法的基礎上,讓學生選擇自己最喜歡的,實現學生對演算法的「自主優化」,教師切不可「一刀切」,不然會適得其反。例如:我班有一個學生,他每次在口算退位減法時,總喜歡扳手指,我想改掉他這個「毛病」,於是利用中午休息時間個別對他進行「破十減」指導,結果越發糟糕,不但算得更慢而且錯誤率更高,還不如扳手指速度快。由此可見,教師要充分尊重學生的想法,鼓勵學生獨立思考,提倡計算方法的多樣化,同時要引導學生在眾多的演算法中選擇最適合於自己的方法,這樣才能更好地促使學生的發展。
四、持之以恆,才能有成效。口算的最終目的是讓學生脫離演算法達到脫口而出的境地,但這個目的不是一下子能達到的,是要通過反復訓練才能達到熟練。
問題三:什麼方法可以提高孩子的口算速度 。
一、 重視培養學生說算理。 要提學生的口算能力,首先要重視培養小學生會說算理,學生能說就能想,這樣有利於理解算理,掌握口算方法,進而提高口算能力。如教學「9+5」的進位加法可以讓學生講出各種思考過程,同樣,學生說口算思路的過程也就是訓練學生思維能力的過程,學生的思維能力提高了,就能促進他們更好的理解算理,口算能力也必然得到培養。
二、 加強口算的基本訓練。 俗話說:「熟能生巧」,要提高口算能力,必須抓好口算的基本訓練,做的多了,反映就快,正確率就高,反之,反應慢,准確率就低。口算訓練中,要注意化繁為簡,突出難點,對於基本的口算如:乘法口決,20以內加減法要反復訓練,達到熟練,而20以內的進位加、退位減的口算是重點訓練內容。
三、 持之以恆地訓練。 口算能力的培養不是一朝一夕可以達到的,需要在教學中長期懈地、有計劃的進行,這就要求教師持之以恆地進行口算訓練,例如:每節課開始堅持3-5分鍾的口算訓練,並結合內容,有目的的選擇口算題目,這樣即能訓練學生本節課的各種能力,又可以訓練口算能力,從而達到一舉兩得的效果,總之,在教學時,凡需要計算的,盡量與口算訓練相結合,能口算的堅持讓學生口算,長期堅持不懈,必能提高口算能力,形成口算習慣。
四、 按一定速度要求訓練。 口算能力表現在正確、迅速上,正確是第一位,但速度也很重要,一定的速度能反映出口算能力的高低,同時也能間接地反映一個人思維是否敏捷、靈活。口算訓練要有速度要求,但要在口算正確的前提下,訓練學生口算的速度,兩者要統一,事實上,一個算得快的學生,正確率一般也比較高,反之亦然,在教學中,教師就可以根據班級學生的情況,採取不同方式逐步提出速度要求,例如組織口算競賽,瞬時提高等方式。
五、 適當介紹一些口算方法。 好的演算法,是提高口算能力的催化劑,培養口算能力,除了教材中已講過的一些口算方法外,適當介紹一些其他口算方法,不僅可以提高學生的口算能力,也可以增加學生學習口算的興趣,提高學習口算的積極性。如,各種運算定律的靈活運用,一些簡單數的記憶等等。
問題四:怎麼提高口算速度,有快捷方法嗎 如何提高你的學習成績
學習要有合理的規律。課堂上做的筆記你要在課後及時復習,不僅要復習老師在課堂上講授的重要內容,還要復習那些你仍感模糊的認識。如果你堅持定期復習筆記和課本,並做一些相關的習題,你定能更深刻地理解這些內容,你的記憶也會保持更久。定期復習能有效地提高你的考試成績。