導航:首頁 > 方法技巧 > 數學解題技巧的方法

數學解題技巧的方法

發布時間:2022-09-06 20:11:32

『壹』 高考數學解題技巧12種

數學沖刺復習一定要把大綱中規定的核心重要考點進行梳理,結合做題來進一步的鞏固,熟練把握。那麼接下來給大家分享一些關於高考數學解題技巧12種,希望對大家有所幫助。

高考數學解題技巧12種

一、調理大腦思緒,提前進入數學情境

考前要摒棄雜念,排除干擾思緒,使大腦處於「空白」狀態,創設數學情境,進而醞釀數學思維,提前進入「角色」,通過清點用具、暗示重要知識和 方法 、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態准備應考。

二、「內緊外松」,集中注意,消除焦慮怯場

集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。

三、沉著應戰,確保旗開得勝,以利振奮精神

良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題後,不要急於求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生「旗開得勝」的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的「門坎效應」,之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。

四、「六先六後」,因人因卷制宜

在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行「六先六後」的戰術原則。

1.先易後難。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

2.先熟後生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對後者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之後,就可實施先熟後生的方法,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。

3.先同後異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。題一般要求較快地進行「興奮灶」的轉移,而「先同後異」,可以避免「興奮灶」過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力,4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創造一個寬松的心理基矗5.先點後面。近年的高考數學解答題多呈現為多問漸難式的「梯度題」,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題准備了思維基礎和解題條件,所以要步步為營,由點到面6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施「分段得分」,以增加在時間不足前提下的得分。

五、一「慢」一「快」,相得益彰

有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的「基礎工程」,題目本身是「怎樣解題」的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。

六、確保運算準確,立足一次成功

數學高考題的容量在120分鍾時間內完成大小26個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從「數量」上,而且從「性質」上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟,假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。

七、講求規范書寫,力爭既對又全

考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、"感情分"也就相應低了,此所謂心理學上的"光環效應"。"書寫要工整,卷面能得分"講的也正是這個道理。

八、面對難題,講究方法,爭取得分

會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法

1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。

2.跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為"已知",完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。

九、以退求進,立足特殊。

發散一般對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對"特殊"的思考與解決,啟發思維,達到對"一般"的解決。

十、執果索因,逆向思考,正難則反

對一個問題正面思考發生思維受阻時,用 逆向思維 的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。

十一、迴避結論的肯定與否定,解決探索性問題

對探索性問題,不必追求結論的"是"與"否"、"有"與"無",可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。

十二、應用性問題思路:面—點—線

解決應用性問題,首先要全面調查題意,迅速接受概念,此為"面";透過冗長敘述,抓住重點詞句,提出重點數據,此為"點";綜合聯系,提煉關系,依靠數學方法,建立數學模型,此為"線",如此將應用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際背景

高考數學大題答題技巧

一、三角函數題

注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。

二、數列題

1、證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列; 2、最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證; 3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。

三、立體幾何題

1、證明線面位置關系,一般不需要去建系,更簡單;

2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;

3、注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。

四、概率問題

1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;

2、搞清是什麼概率模型,套用哪個公式;

3、記准均值、方差、標准差公式;

4、求概率時,正難則反(根據p1+p2+...+pn=1);

5、注意計數時利用列舉、樹圖等基本方法;

6、注意放回抽樣,不放回抽樣;

7、注意「零散的」的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;

8、注意條件概率公式;

9、注意平均分組、不完全平均分組問題。

五、圓錐曲線問題

1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;

2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變數的取值范圍等等;

3、戰術上整體思路要保7分,爭9分,想12分。

六、導數、極值、最值、不等式恆成立(或逆用求參)問題

1、先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能並,用「和」或「,」隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);

2、注意最後一問有應用前面結論的意識;

3、注意分論討論的思想;

4、不等式問題有構造函數的意識;

5、恆成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);

6、整體思路上保6分,爭10分,想14分。

高考解答題答題須知

1、注意分步解答題目的形式,若各個小問題由一個大前提統領,則很可能上面的結論是下面問題的條件,要注意這一點,同時若小問題單獨添加了限制條件,則其結論不可應用於下一個小問題的解答,所以應仔細審題,不可疏忽。

2、在運算過程中要求一次性運算準確,否則若出現運算失誤,考生往往受思維定式的影響,很難檢查出來。只要細心了,對自己就要有信心,不要一道題做了再反復去檢查是否准確,那樣會浪費大量寶貴的時間,在此問題上應把握「寧慢勿粗」。

3、對於解答題,要注重通性通法,不要過於追求技巧,把高考神秘化。因為高考越來越注重基礎與通性通法的考查。舉個例子來說吧,解析幾何對大部分學生來說很難得全分,通常解析幾何放在高考最後一題或倒數第二題的位置,算是一個壓軸題吧。這類解析幾何題的通法就是把直線方程與曲線方程聯立,雖然有些時候可能計算會比較麻煩,但是都能做得出來。如果過於關注技巧,對有些題目就不適用了。

4、對絕大部分同學來說,要把主要精力和時間放在常規題目上(一般是指前19道題和最後1道選做題)。從高考的試卷來看,它的基礎分可能會佔到百分之七八十,如果你把基礎題、常規題做好了,取得中等成績是沒問題的。在這個基礎上,再拿一些難題的分數,就能獲得比較理想的分數了。反過來,如果求快心切,就很容易在前面的基礎題上出現本來可以避免的失誤,而後面的難題又不一定得分,這樣和別人的差距就拉大了,很吃虧。


高考數學解題技巧12種相關 文章 :

★ 2020高考數學的12種解題思路!

★ 高考數學選擇題答題技巧匯總大全

★ 高考數學常見的解題策略

★ 2020高考數學的12個答題模板!

★ 高考數學答題技巧大全

★ 高考數學的解題技巧有哪些

★ 2020高考數學解題技巧大全

★ 高考數學6大解答題技巧

★ 高考數學題解題方法與七大知識點總結

★ 高考數學常用答題技巧參考

『貳』 數學選擇題答題技巧

數學選擇題的解題技巧——解題技巧(7)
會做的題當然要做對、做全、得滿分,而不會做的或是難題該怎樣得分呢?首先遇到難題不要放棄,豈不知"易題得滿分難,難題得小分易",一般的難題第一、二問都是能得分的,即使一點思路都沒有,我們不妨羅列一些相關的重要步驟和公式,也許不覺中已找到了解題的思路。再就是要學會"分段得分",高考數學解答題評分的總原則是"分段給分",即會多少知識給多少分,所以你可能前面某個地方卡住了,可以先跳過去,假定它是正確的,向後求解;或是前後兩問無聯系,只做其中某一問等等。

【對各類具體的題型,也有一些具體的對策,以最快最精確的解答。】

●選擇題的解法:選擇題得分關鍵是考生能否精確、迅速地解答。究。掌握這方面的技巧,充分發揮主觀能動性數學選擇題的求解有兩種思路:一是從題干出發考慮,探求結果;二是題乾和選擇的分支聯合考慮或從選擇的分支出發探求是否滿足題干條件,由於答案在四個中找一個,隨機分一定要拿到。選擇題解題的基本原則是:"充分利用選擇題的特點,小題盡量不要大做"。

●填空題的解法:填空題答案有著簡短、明確、具體的要求,解題基本原則是小題大做別馬虎,特別是解的個數和形式是否滿足題意,有沒有漏解和不滿足題目要求的解要認真區別對待。今年數學高考填空題的分值增加許多,其得分情況對高考成績大有影響,所以答題時要給予足夠的精力和時間,填空的解法主要有:直接求解法、特例求解法、數形結合法,解題時靈活應用。

●解答題的解法:解答題得分的關鍵是考生能否對所答題目的每個問題有所取捨,一般來說在解答題中總是有一定數量的數學難題(通常在每題的後半部分和最後一、兩題中),如果不能判別出什麼是自己能做的題,而在不會做的題上花太多的時間和精力,得分肯定不會高。解答題解題時要注意:書寫規范,各式各樣的題型有各自不同的書寫要求,答題的形式對了基本分也就得到了,立體幾何題有規定的書寫要求,解題時務必注意。審題清晰,題讀懂了解題才能得到分,要快速在短時間內審清題意,知道題目表達的意思,題目要解決的是什麼問題,關鍵的字詞是什麼,特殊的情形有沒有,不能一知半解,做了一半才發現漏了條件推翻重來,費了精力影響情緒。壓軸題一般有3問,這樣的題目至少有兩問的,第一問,其實不難,你要有信心做出來,一般也就是個簡單的理論的應用,不會刁難你,所以,你要作出來。如果有第三問,那麼第二問多半是中繼作用,就是利用第一問的結論,然後第三問有要用到它自己。這一問,比較難一點,但是,如果你時間允許,還是可以做出來的。 第三問嘛,如果時間很緊張,我個人建議,放棄吧,回頭檢查你作的其他題目,效果更好。

究。掌握這方面的技巧,充分發揮主觀能動性
解答題中,由於是按步給分,應特別注意過程步驟的嚴謹和規范,追求"表達的准確、考慮的周密、書寫的規范、語言的科學",寫清得分點,清楚地呈現自己的思維層次。否則會做的題目若不注意准確表達和規范書寫,常常會被"分段扣分",如解概率題,要給出適當的文字說明,不能只列幾個式子或單純的結論;立體幾何證明題中注意定理使用的條件要缺一不可,不能疏漏等等。解答題應注意"大題小做,大題細作"。另外,注意 "快慢結合,合理把握時間"。慢主要體現在審題方面,看題要清,審題要透徹,合理方面腳步,防止錯看,漏看,從一定義上說:"成在審題,敗在審題"。快主要是解答要快速准確,一步到位,盡量減少反工檢查的時間。總體時間的把握上,在保證選填的基礎上,要留出充分的時間放在解答題上,保證充分的思維時空,另外還應預留時間對把握不足的題目進行復查。

每年高考試題總有創新,對新型的探索開放題的解題要訣有:(1)試:閱讀題意,分清條件和結論,嘗試最簡單、最基礎的運算。(2)猜:在前面嘗試的基礎上,大膽猜想,可以運用歸納、類比、推廣、化歸等思想方法多角度、多維度地猜想,合理進行猜想是關鍵的一步。(3)證:綜合運用數學知識進行求解與證明,要注意前後聯系,過程嚴謹。在探索開放題的解答過程中,要注意嘗試舉例,並進行多方位的聯想,將式子結構、運演算法則、解題方法、問題的結論等引申、推廣或遷移,從而進行大膽的猜想,最後再進行規范的證明。

『叄』 最全最數學解題方法

最全最實用的數學解題方法

“考考考”,老師的法寶;"分分分”,學生的命根。快期末了,看看這些解題方法,你都掌握了嗎?

(一) 選擇題

對選擇題的審題,主要應清楚:是選擇正確還是選擇錯誤?答案寫在什麼地方,等等。

做選擇題有三種基本方法:

1、直接解答法。根據已知條件,通過計算、作圖或代入選擇依次進行驗證等途徑,得出正確答案。

2、排除法。把選項中錯誤中答案排除,餘下的便是正確答案。

3、 猜測法。這里可不是讓你拿橡皮擲篩子哦,而是根據你所學的知識,合理推測。例如,讓你求橢圓的離心率,選項有4個,其中兩個大於1,兩個在0~1之間,那肯定不能選擇大於1的選項。(不知道為什麼的,趕緊面壁去吧)

(二) 應用性問題的審題和解題技巧

解答應用性試題,要重視兩個環節,一是閱讀、理解問題中陳述的材料;二是通過抽象,轉換成為數學問題,建立數學模型。函數模型、數列模型、不等式模型、幾何模型、計數模型是幾種最常見的數學模型,要注意歸納整理,用好這幾種數學模型。

(三) 最值和定值問題的審題和解題技巧

最值和定值是變數在變化過程中的兩個特定狀態。

最值著眼於變數的最大/小值以及取得最大/小值的條件;

定值著眼於變數在變化過程中的某個不變數。

近幾年的數學高考試題中,出現過各種各樣的最值問題和定值問題,選用的知識載體多種多樣,代數、三角、立體幾何、解析幾何都曾出現過有關最值或定值的試題,有些應用問題也常以最大/小值作為設問的方式。分析和解決最值問題和定值問題的思路和方法也是多種多樣的。命制最值問題和定值問題能較好體現數學高考試題的命題原則。應對最值問題和定值問題,最重要的是認真分析題目的情景,合理選用解題的方法。

(四) 計算證明題

解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含的信息,確定具體解題步驟,問題才能解決。在做這種題時,有一些共同問題需要注意:

1 注意完成題目的全部要求,不要遺漏了應該解答的內容。

2 在平時練習中要養成規范答題的習慣。

3 不要忽略或遺漏重要的關鍵步驟和中間結果,因為這常常是題答案的采分點。

4 注意在試卷上清晰記錄細小的步驟和有關的公式,即使沒能獲得最終結果,寫出這些也有助於提高你的分數。

5 保證計算的准確性,注意物理單位的變換。

(五) 參數問題的審題和解題技巧參數問題

參數兼有常數和變數的雙重特徵,是數學中的“活潑”元素,曲線的參數方程,含參數的曲線方程,含參變系數的函數式、方程、不等式等,都與參數有關。

函數圖象與幾何圖形的各種變換也與參數有關,有的探究性問題也與參數有關。參數具有很強的“親和力”,能廣泛選用知識載體,能有效考查數形結合、分類討論、運動變換等數學思想方法。

應對參數問題要把握好兩個環節,一是搞清楚參數的意義幾何意義、物理意義、實際意義等,特別是具有幾何意義的參數,一定要運用數形結合的思想方法處理好圖形的幾何特徵與相應的數量關系的相互聯系及相互轉換。二是要重視參數的取值的討論,或是用待定系數法確定參數的值,或是用不等式的變換確定參數的取值范圍。

(六) 代數證明題的審題和解題技巧代數證明題

近幾年的數學高考注意控制立體幾何試題的難度,推理論證能力的考查重點轉移到代數與解析幾何特別是代數證明題。函數的性質及相關函數的證明題;數列的性質及相關數列的'證明題;不等式的證明題,尤其是與函數或數列相綜合的不等式的證明題等,都頻頻出現在近幾年的數學高考試題之中。

應對代數證明題,一是要全面審視各相關因素的關系,注意題目的整體結構;二是要完整、准確表述推理論證的過程,對於具有幾何意義的代數證明題,要妥善處理幾何直觀、數式變換及推理論證的關系,注意防止簡單運用“如圖可知”替代推理論證。

(七) 探究性題的審題和解題技巧

近幾年的數學高考貫徹了“多考一點想,少考一點算”的命題意圖,加大試題的思維量,控制試題的運算量,突出對數學的“核心能力”——思維能力的考查。有些試題設計了新穎的情景,有些試題設計了靈活的設問方式,有些試題設計了新的題型結構如存在性問題;發現結論且證明結論的問題;尋求並證明充分條件或必要條件的問題等 ,這樣的試題有助於克服死記硬背和機械照搬,優化考查功能。

應對探究性問題要審慎處理“閱讀理解”和“整體設計”兩個環節,首先要把題目讀懂,全面、准確把握題目提供的所有信息和題目提出的所有要求,在此基礎上分析題目的整體結構,找好解題的切入點,對解題的主要過程有一個初步的設計,再落筆解題。在思維受阻時,及時調整解題方案。切忌一知半解就動手解題。

;

『肆』 大學數學九大解題技巧

解題是深化知識、發展智力、提高能力的重要手段。下面我給你分享大學數學九大解題技巧,歡迎閱讀。

大學數學九大解題技巧

1、配法

通過把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式解決數學問題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式,是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2bxc=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的.方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

8、幾何變換法

在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。

幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

9、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

大學數學答題策略

一、學會審題,才會解題

很多考生對審題重視不夠,往往要做的題目都沒有看清楚就急於下筆,審好題是做題的關鍵,審題一一定要逐字逐句的看清楚,通過審題發現題目有無易漏、易錯點,只有仔細審題才能從題目中獲取更多的信息,只有挖掘題目中的隱含條件、啟發解題思路,提醒常見解題誤區和自己易出現的錯誤,才能提高解題能力。只有認真的審題,謹慎的態度,才能准確地揣摩出題者的意圖,發現更多的信息,從而快速找到解題方向。

考前保持頭腦清醒,要摒棄雜念,不斷進行積極的心理暗示,創設寬松的氛圍,創設數學情境,進而醞釀數學思維,靜能生慧,滿懷信心的進行針對性的自我安慰,以平穩自信、積極主動的心態准備應考。這就要求我們要善於觀察。

二、先做簡單題,後做難題

從我們的心理學角度來講,一般拿到試卷以後,心情比較緊張,此時不要急於下手解題,可以先對試題多少、分布、難易程度從頭到尾瀏覽一遍,做題要先易後難,做到心中有數,一般簡單的題目佔全卷60%,這是很重要的一部分分數,見到簡單題要細心解題,盡量使用數學語言,而且要更加嚴謹以振奮精神,養成良好的審題習慣鼓舞信心。

如果順序做題既耗費時間又拿不到分,會做的題又被耽誤了。所以先做簡單題,多年的經驗告訴我們,當你解題不順利時,更要冷靜,靜下心來,沉住氣,根據自己的實際情況,果斷跳過自己不會做的題目,把簡單的都做完,如果我們能把這部分的分數拿到,就已經打了勝仗,再集中精力做比較難的題,有了勝利的信心,面對住偏難的題更要有耐心,不要著急,可以先放棄,但也要注意認真對待每一道題,不能走馬觀花,要相信自己。到應有的分數。最好還有善於把難題轉換成簡單的題目的能力。

三、多做練習,提升能力

整體而言高考數學要想考好,一定要做大量的練習,要有扎實的理論基礎,在此基礎上輔以做題技巧,才不會出現考試時間不夠用,自己會做的題最後沒時間做,得不償失。就要求我們在大量的練習的基礎上,認真總結方程的思想,數形結合的思想,函數的思想等等,掌握各種類型題目的規律。

我們還要求考生不但會做題還要准確快速地解答出來通過練習掌握解題技巧,利用解題技巧快速解題,通過多做練習,做到熟能生巧,這才是我們練習的目的。做題還要集中注意力,這是是考試成功的保證。有時精神緊張,會做的題也會變的不會做,平時要有針對性的訓練一些難題,有益於積極思維,樹立信心。

因此,對於大部分高考生來說,平時加強訓練,養成准確的解題習慣,熟練掌握解題技巧是非常有必要的。

四、會做的題保證做對

這一點很重要,實踐中發現,考試我們會做的題丟分率是百分之十,也就是說由於大意每次考試大家都要丟掉這么多的分,怎麼將你的解題策略轉化為得分點,雖然解題思路正確甚至很巧妙,但是最後可能做不對,這一點往往被一些考生所忽視,但是由於不善於把圖形語言變成自己理解的語言,因此卷面上出現大量會又做不對的情況,我們自己的估分和得分相差甚遠。如立體幾何論證中的跳步,大總分人會丟掉三分之一以上的分數,代數論證中,得分更是少 的可憐。所心我們要邊做邊檢查解題思路正確與否,做完後認真核對。不僅把題目做完,更要保證准確率,會做的一定要保證做對,要能得到分。

『伍』 初中數學解題方法與技巧

初中數學解題方法與技巧如下:

每個幾何定理都有與它相對應的幾何圖形,我們 把它叫做基本圖形,添輔助線往往是具有基本圖形的性質而基本圖形不完整時補完整基本圖形,因此「添線」應該叫做「補圖」!這樣可防止亂添線,添輔助線也有規律可循。

復合應用題解題思路:

1、理解題意,就是弄清應用題中的已知條件和要求問題。

2、分析數量關系,就是分析已知數量與未知數數量,已知數量與未知數數量間的關系,找到解題途徑,確定先算什麼,再算什麼,最好算什麼。

3、列式解答,就是根據分析,列出算式並計算出來。

4、驗算並給出答案,就是檢驗解答過程中是否合理,結果是否正確,與原題的條件是否相符,最後寫出答案。

『陸』 一般做數學題的解題技巧是什麼

做選擇題時最忌諱的就是不認真讀題,埋頭苦算,結果不但浪費了大量的時間,有時候還會選錯。所以一定要讀透題,由題迅速聯想到涉及的概念、公式、定理以及以及知識點中要注意的問題。在做選擇題的過程中,遇到關鍵性的詞語可用筆做個記號,第一遍沒做出的題也要做個記號,但要注意與其他記號區分開來,這樣不容易遺漏。
選擇題的客觀性強技巧也多。以下6種事半功倍的解題技巧可供大家採用:
1、直接法
有些選擇題是由計算題、應用題、證明題、判斷題改編而成的。這類題目比較簡單,可直接從題設的條件出發,得出正確結論。
2、排除法
在拿不準的情況下可逆向進行,從選項入手,一邊審題邊排除,一個一個地排除掉,直至得到正確選項。
3、估值法
運用一些基本定義,如定義域、值域或不等式的有關知識來確定一個足夠小的范圍,要是四個選項中有一個答案是滿足的,那麼正確答案也就有了。
4、圖形法
根據題中已知條件畫出合適的圖形,如數軸、幾何、三角函數等圖像,通過在圖像上的分析得出答案。
5、推理法
根據題目中的已知條件推理下去,找出規律,歸納出正確笞案。
6、賦值法
在一些特殊形式的選擇題中,給未知量賦一個適當的便於計算的值,就可確定正確笞案。
在解答數學選擇題時如果能夠做到准、快、巧,就既能在選擇題部分獲得高分,又能嬴得較多的時間去解答其他部分的問題,從而使得數學最終突破高分。

『柒』 初中數學解題技巧 史上最全解題方法總結

很多初中生難於掌握解題技巧而覺得學習初中數學很困難,實際上數學是有很多解題技巧的,下面我就為大家總結一下,僅供大家參考。

初中數學巧取特殊值,以簡代繁

初中數學雖然是基礎數學,但是這並不意味著就沒有難度,特別是在素質教育下,從培養學生綜合素質能力的角度出發,初中數學越來越重視數學思維的培養,因此在很多數學問題的設置上,都進行了相當難度的調整,使得數學問題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會顯得較為艱難。

如有些數學問題是在一定的范圍內研究它的性質,如果從所有的值去逐一考慮,那麼問題將不勝其煩甚至陷入困境。在這種情況下,避開常規解法,跳出既定數學思維,就成了解題的關鍵。

初中數學的常見解題方法

直接推演法:直接從命題給出的條件出發,運用概念,公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代人條件中去驗證,找出正確答案.此法稱為驗證法(也稱代入法).當遇到定量命題時,常用此法。

特值法:用合適的特殊元素(如數或圖形)代人題設條件或結論中去,從而獲得解答.這種方法叫特殊元素法。

初中生都知道的數學解題技巧

排除、篩選法;對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

分析法:直接通過對選擇題的條件和結論,作詳盡地分析、歸納和判斷,從而選出正確的結果,稱為分析法。

整體代入法:把某一代數式進行化簡,然後並不求出某個字母的取值,而是直接把化簡的結果作為一個整體代入。

以上就是我為大家總結的初中數學解題技巧,僅供大家參考,希望對大家有所幫助。

『捌』 高中數學經典解題技巧有哪些

數學解題的一些技巧:

1、換元法:所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。

3、配方法:把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。

4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數。

解題時需要注意的問題:

1、精選題目,避免題海戰術

只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。

2、認真分析題目

解答任何一個數學題目之前,都要先進行分析。相對於比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,消除這些差異。

3、做好題目總結

解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足,以便改進和提高。因此,解題後的總結至關重要,這正是我們學習的大好機會。

『玖』 初中數學解題技巧及口訣 常用方法推薦

數學學習時間總是很緊張的,很多知識要點需要背誦,但是總是邊學邊忘,給很多同學造成困擾。下面我就大家整理一下初中數學解題技巧及口訣,僅供參考

有理數加法運算

同號兩數來相加,絕對值加不變號

異號相加大減小,大數決定和符號

互為相反數求和,結果是零須記好

【注】「大」減「小」是指絕對值的大小

解方程

已知未知鬧分離,分離要靠移完成

移加變減減變加,移乘變除除變乘

平方差公式

兩數和乘兩數差,等於兩數平方差

積化和差變兩項,完全平方不是它

配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是 數學 中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

填空題解題方法

直接法

直接法是解填空題最基本的方法,它要求同學們直接從題設條件出發,利用定義、定理、性質、公式等知識。通過推理和運算等過程,直接得到結果。

數形結合法

數形結合是一種重要的數學方法,它要求同學們在解題時,根據題目條件的具體特點,做出符合題意的圖形,從而做到數中想形,以形助數。

通過對圖像的觀察、分析和研究。啟發解題恩路,找出問題的隱含條件,從而簡化解題過程,檢驗解題結果。

以上就是我為大家整理的初中數學解題技巧及口訣。

『拾』 高中數學做題技巧有哪些

高中數學解題技巧主要有以下幾種方法:

1、配方法:把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。

2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。

3、換元法:所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數。

知道孩子數學學不好的原因:

1、不要讓孩子被動學習,還有很多同學在上了高中之後還想初中,那樣每天吊兒郎當,這是跟隨著老師的思路。自己沒有一些衍生,之前沒有學習方法,在下課了也不會找。道練習題去練習,就等著上課,並且可前面不會用寫對老師上課的內容都不知道上課光想著記筆記,沒有思路的學習是沒有成效的。

2、老師上課的時候就是把這個知識表達的清楚一點,分析一下重點和難點。然而還有很多學生上課不專心聽課。對很多葯店也都不知道,只是筆記記了一大堆,自己也看不懂問題還有很多,在課後也不會進行總結。只是快點兒寫作業。寫作業的時候,他們也就是亂套提醒他們對概念,法則都不了解。做題也只能是碰巧的做。

閱讀全文

與數學解題技巧的方法相關的資料

熱點內容
菜鳥寫作技巧和方法 瀏覽:760
閑置快速賣出去的方法 瀏覽:547
電腦用電壓力鍋做蛋糕的方法 瀏覽:3
建行隨芯用使用方法 瀏覽:280
眼角的皺紋用什麼方法可以弄掉 瀏覽:930
汽車螺紋測量方法 瀏覽:394
分析企業財務數據的方法 瀏覽:844
解決好三農問題的方法 瀏覽:773
小彈力帶的腿部訓練方法 瀏覽:872
eminence使用方法 瀏覽:183
統計方法與資料分析課 瀏覽:417
如何擠奶方法視頻教程 瀏覽:79
榮耀6電量提醒設置在哪裡設置方法 瀏覽:111
黃褐斑國外治療方法 瀏覽:616
煎包機的製作方法視頻 瀏覽:840
電腦怎麼清理桌面垃圾最快方法 瀏覽:606
轎車輪胎性能檢測方法及其標准 瀏覽:439
pc肌鍛煉方法教學視頻 瀏覽:997
接觸角測量儀使用方法 瀏覽:791
冰晶石用什麼方法乾燥好 瀏覽:897