❶ 人工智慧開發常用的機器學習方法
隨著互聯網行業的不斷發展,人工智慧和AI技術得到更多人的熱捧,那麼在學習人工智慧和AI技術時,應該掌握各種各樣的機器學習方法。下面雲南java培訓為大家介紹不同機器學習的具體方法。
什麼是支持向量機?
支持向量機是一種機器學習演算法,可用於分類和回歸問題。它使用一種稱為核心技術的方法來轉換數據,並根據轉換在可能的輸出之間查找邊界。簡單地說,北大青鳥發現它能夠執行非常復雜的數據轉換,並根據定義的標簽或輸出進行數據劃分。
支持向量機的優勢
支持向量機不僅能夠進行分類還能起到回歸的作用,可以說是非線性支持向量機,也可以說是使用非線性核的支持向量機。非線性支持向量機的演算法計算邊界不一定為直線。昆明UI設計認為好處是能夠捕獲數據點之間更復雜的關系。因此,您不需要進行復雜的轉換。缺點是需要更多的計算,因此需要更長的訓練時間。
核心技巧具體是什麼呢?
核技術可以轉換得到的數據,具有幾個優秀的特性,可以使用這些特性製作分類器,得出自己不知道的數據。就像解開DNA的鎖鏈一樣。首先,從這個不可見的數據向量開始。使用核心提示時,會對其進行解密和自合成,從而創建一個連電子表格都無法理解的大型數據集。但是,大數據開發發現隨著數據集的擴展,類之間的邊界變得清晰,SVM演算法可以計算出更優化的超平面。
❷ 在機器學習中如何快速地掌握數學知識
現如今,只要是和計算機有關的技術,就離不開數學知識,尤其是在機器學習中,數學工具是一個十分重要的工具,也正是因為擁有了這些數學知識,機器學習才能夠幫助我們解決很多的問題,才能夠為人工智慧提供貢獻。那麼在機器學習中如何快速地掌握數學知識呢?下面我們就給大家詳細介紹一下這些問題,希望這篇文章能夠更好的幫助大家。
1.掌握核心概念
我們要握核心概念,比如說在線性代數當中核心概念是什麼?就是線性空間,向量矩陣以及對於向量矩陣的度量,包括范數、包括內積這些,這些就是它的核心概念。那麼在概率統計當中,頻率學派,還有貝葉斯學派,他們兩者之間的區別是一個核心概念,同時呢,像期望方差這些指標,還有條件概率,這樣的一些概念,條件概率聯合概率這樣一些概念也是核心概念。那麼在最優化當中,這些演算法,這個梯度下降法,或者牛頓法,這就是核心概念。這樣我們才能夠更好的了解這些知識。
2.以點帶面
很多人學習數學工具知識都是十分緊湊的,在時間有限的情況下,我們一定要把有限的精力集中在重要的知識上。先把這些核心概念搞清楚,再通過這些核心的概念,來以點代面,從這些關鍵的問題去鋪開,慢慢地去接觸其他的問題。
3.了解問題導向
在學習的時候,我們可以以問題為導向,就是結合著我們實際的需求,結合我們實際的問題,來決定我們去學什麼。掌握到什麼程度是我們需要注意的內容,學習機器學習當中的數學都是為了解決問題。如果不能解決問題的話,我們學到的這個東西的價值就沒有能夠解決問題的這個知識的價值大。當然我們也不能否定其價值。所以在學習的時候,大家可以嘗試著以問題為導向。帶著問題去探索這些知識,帶著問題去學習知識,可能你會發現,這樣會得到更高的效率。所以大家可以做好這些內容。
關於如何學習數學工具知識的具體方法我們就給大家講到這里了,通過這些方法的描述,想必大家已經知道如何學習數學知識了吧?希望大家早日能夠學成數學知識。
❸ 怎麼快速上手機器學習
機器學習任你可以編程做一下那個aa編程的語言攝。植入到機器里邊這樣你上手學習要的就比較快了唉希望這個編程這一塊能夠幫助到你然後你可以在網路上搜索一下這編程的一些代碼可以放寫進去寫。達達。
❹ 經典的機器學習方法
機器學習:一種實現人工智慧的方法
機器學習最基本的做法,是使用演算法來解析數據、從中學習,然後對真實世界中的事件做出決策和預測。與傳統的為解決特定任務、硬編碼的軟體程序不同,機器學習是用大量的數據來「訓練」,通過各種演算法從數據中學習如何完成任務。
舉個簡單的例子,當我們瀏覽網上商城時,經常會出現商品推薦的信息。這是商城根據你往期的購物記錄和冗長的收藏清單,識別出這其中哪些是你真正感興趣,並且願意購買的產品。這樣的決策模型,可以幫助商城為客戶提供建議並鼓勵產品消費。
傳統的機器學習演算法包括決策樹、聚類、貝葉斯分類、支持向量機、EM、Adaboost等等。這篇文章將對常用演算法做常識性的介紹,沒有代碼,也沒有復雜的理論推導,就是圖解一下,知道這些演算法是什麼,它們是怎麼應用的。
決策樹
根據一些 feature 進行分類,每個節點提一個問題,通過判斷,將數據分為兩類,再繼續提問。這些問題是根據已有數據學習出來的,再投入新數據的時候,就可以根據這棵樹上的問題,將數據劃分到合適的葉子上。
❺ 機器學習一般常用的演算法有哪些
機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。
一、線性回歸
一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。
二、Logistic 回歸
它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
三、線性判別分析(LDA)
在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
四、決策樹
決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
五、樸素貝葉斯
其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。
六、K近鄰演算法
K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。
七、Boosting 和 AdaBoost
首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。
八、學習向量量化演算法(簡稱 LVQ)
學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求
❻ 如何快速掌握機器學習中的數學知識
我們學習的諸多技術中都離不開數學知識,而機器學習中涉及到很多知識,其中最重要的就是數學知識。當然,很多人認為數學是比較難的知識,不過確實是這樣的。現在有很多人都開始關注機器學習,而學習機器學習離不開數學內容,你是否開始納悶,要如何快速地掌握機器學習的知識呢?下面我們就給大家解答一下這個問題。
快速掌握機器學習中的數學知識需要從三個方向進行,第一就是掌握核心概念,掌握核心概念。我們需要掌握核心概念,比如說在線性代數當中核心概念是什麼?就是線性空間,向量矩陣以及對於向量矩陣的度量,包括范數、包括內積這些,這些就是它的核心概念。那麼在概率統計當中,頻率學派,還有貝葉斯學派,他們兩者之間的區別是一個核心概念,同時呢,像期望方差這些指標,還有條件概率,這樣的一些概念,條件概率聯合概率這樣一些概念也是核心概念。那麼在最優化當中,這些演算法,這個梯度下降法,或者牛頓法,這就是核心概念。
然後就是以點帶面。具體就是在時間有限的情況下,我們一定要把有限的精力集中在重要的知識上。先把這些核心概念搞清楚,再通過這些核心的概念,來以點代面,從這些關鍵的問題去鋪開,慢慢地去接觸其他的問題。這樣做有利於增加我們的數學知識儲備。
最後就是問題導向,也就是結合著我們實際的需求,結合我們實際的問題,來決定我們去學什麼。因為畢竟學習機器學習當中的數學都是為了解決問題。如果不能解決問題的話,你學到的這個東西的價值就沒有能夠解決問題的這個知識的價值大。當然我們也不能說一點價值都沒有。在學習的時候,大家可以嘗試著以問題為導向。帶著問題去探索這些知識,帶著問題去學習知識,那時候我們就會發現,這樣會得到更高的效率。
在這篇文章中我們給大家介紹了關於機器學習中數學的相關內容,通過這些內容我們可以更好地掌握到機器學習的要領,要知道數學知識是一個十分重要的知識體系,我們只有學好了數學才能夠為機器學習奠定基礎,希望這篇文章能夠更好的幫助大家。
❼ 機器學習中常用的方法有什麼
機器學習中常用的方法有LR,SVM,集成學習,貝葉斯
❽ 機器學習新手必看十大演算法
機器學習新手必看十大演算法
本文介紹了機器學習新手需要了解的 10 大演算法,包括線性回歸、Logistic 回歸、樸素貝葉斯、K 近鄰演算法等。
在機器學習中,有一種叫做「沒有免費的午餐」的定理。簡而言之,它指出沒有任何一種演算法對所有問題都有效,在監督學習(即預測建模)中尤其如此。
例如,你不能說神經網路總是比決策樹好,反之亦然。有很多因素在起作用,例如數據集的大小和結構。
因此,你應該針對具體問題嘗試多種不同演算法,並留出一個數據「測試集」來評估性能、選出優勝者。
當然,你嘗試的演算法必須適合你的問題,也就是選擇正確的機器學習任務。打個比方,如果你需要打掃房子,你可能會用吸塵器、掃帚或拖把,但是你不會拿出鏟子開始挖土。
大原則
不過也有一個普遍原則,即所有監督機器學習演算法預測建模的基礎。
機器學習演算法被描述為學習一個目標函數 f,該函數將輸入變數 X 最好地映射到輸出變數 Y:Y = f(X)
這是一個普遍的學習任務,我們可以根據輸入變數 X 的新樣本對 Y 進行預測。我們不知道函數 f 的樣子或形式。如果我們知道的話,我們將會直接使用它,不需要用機器學習演算法從數據中學習。
最常見的機器學習演算法是學習映射 Y = f(X) 來預測新 X 的 Y。這叫做預測建模或預測分析,我們的目標是盡可能作出最准確的預測。
對於想了解機器學習基礎知識的新手,本文將概述數據科學家使用的 top 10 機器學習演算法。
1. 線性回歸
線性回歸可能是統計學和機器學習中最知名和最易理解的演算法之一。
預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。
線性回歸的表示是一個方程,它通過找到輸入變數的特定權重(稱為系數 B),來描述一條最適合表示輸入變數 x 與輸出變數 y 關系的直線。
線性回歸
例如:y = B0 + B1 * x
我們將根據輸入 x 預測 y,線性回歸學習演算法的目標是找到系數 B0 和 B1 的值。
可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。
線性回歸已經存在了 200 多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術,可以首先嘗試一下。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學中借鑒的另一種技術。它是解決二分類問題的首選方法。
Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。
logistic 函數看起來像一個大的 S,並且可以將任何值轉換到 0 到 1 的區間內。這非常實用,因為我們可以規定 logistic 函數的輸出值是 0 和 1(例如,輸入小於 0.5 則輸出為 1)並預測類別值。
Logistic 回歸
由於模型的學習方式,Logistic 回歸的預測也可以作為給定數據實例(屬於類別 0 或 1)的概率。這對於需要為預測提供更多依據的問題很有用。
像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似(相關)的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
3. 線性判別分析(LDA)
Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。如果你有兩個以上的類別,那麼線性判別分析是首選的線性分類技術。
LDA 的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA 包括:
每個類別的平均值;
所有類別的方差。
線性判別分析
進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布(鍾形曲線),因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
4. 分類與回歸樹
決策樹是預測建模機器學習的一種重要演算法。
決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數 x 和該變數上的一個分割點(假設變數是數字)。
決策樹
決策樹的葉節點包含一個用於預測的輸出變數 y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。
決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
5. 樸素貝葉斯
樸素貝葉斯是一個簡單但是很強大的預測建模演算法。
該模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來:1)每個類別的概率;2)給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當你的數據是實值時,通常假設一個高斯分布(鍾形曲線),這樣你可以簡單的估計這些概率。
貝葉斯定理
樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。
6. K 近鄰演算法
KNN 演算法非常簡單且有效。KNN 的模型表示是整個訓練數據集。是不是很簡單?
KNN 演算法在整個訓練集中搜索 K 個最相似實例(近鄰)並匯總這 K 個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數(或最常見的)類別值。
訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同(例如都是用英寸表示),那麼最簡單的技術是使用歐幾里得距離,你可以根據每個輸入變數之間的差值直接計算出來其數值。
K 近鄰演算法
KNN 需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算(或學習)。你還可以隨時更新和管理訓練實例,以保持預測的准確性。
距離或緊密性的概念可能在非常高的維度(很多輸入變數)中會瓦解,這對演算法在你的問題上的性能產生負面影響。這被稱為維數災難。因此你最好只使用那些與預測輸出變數最相關的輸入變數。
7. 學習向量量化
K 近鄰演算法的一個缺點是你需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。
學習向量量化
LVQ 的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測(類似 K 近鄰演算法)。最相似的近鄰(最佳匹配的碼本向量)通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或(回歸中的實際值)作為預測。如果你重新調整數據,使其具有相同的范圍(比如 0 到 1 之間),就可以獲得最佳結果。
如果你發現 KNN 在你的數據集上達到很好的結果,請嘗試用 LVQ 減少存儲整個訓練數據集的內存要求。
8. 支持向量機(SVM)
支持向量機可能是最受歡迎和最廣泛討論的機器學習演算法之一。
超平面是分割輸入變數空間的一條線。在 SVM 中,選擇一條可以最好地根據輸入變數類別(類別 0 或類別 1)對輸入變數空間進行分割的超平面。在二維中,你可以將其視為一條線,我們假設所有的輸入點都可以被這條線完全的分開。SVM 學習演算法找到了可以讓超平面對類別進行最佳分割的系數。
支持向量機
超平面和最近的數據點之間的距離被稱為間隔。分開兩個類別的最好的或最理想的超平面具備最大間隔。只有這些點與定義超平面和構建分類器有關。這些點被稱為支持向量,它們支持或定義了超平面。實際上,優化演算法用於尋找最大化間隔的系數的值。
SVM 可能是最強大的立即可用的分類器之一,值得一試。
9. Bagging 和隨機森林
隨機森林是最流行和最強大的機器學習演算法之一。它是 Bootstrap Aggregation(又稱 bagging)集成機器學習演算法的一種。
bootstrap 是從數據樣本中估算數量的一種強大的統計方法。例如平均數。你從數據中抽取大量樣本,計算平均值,然後平均所有的平均值以便更好的估計真實的平均值。
bagging 使用相同的方法,但是它估計整個統計模型,最常見的是決策樹。在訓練數據中抽取多個樣本,然後對每個數據樣本建模。當你需要對新數據進行預測時,每個模型都進行預測,並將所有的預測值平均以便更好的估計真實的輸出值。
隨機森林
隨機森林是對這種方法的一種調整,在隨機森林的方法中決策樹被創建以便於通過引入隨機性來進行次優分割,而不是選擇最佳分割點。
因此,針對每個數據樣本創建的模型將會與其他方式得到的有所不同,不過雖然方法獨特且不同,它們仍然是准確的。結合它們的預測可以更好的估計真實的輸出值。
如果你用方差較高的演算法(如決策樹)得到了很好的結果,那麼通常可以通過 bagging 該演算法來獲得更好的結果。
10. Boosting 和 AdaBoost
Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。
AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。
AdaBoost
AdaBoost與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。
因為在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據非常重要。
總結
初學者在面對各種機器學習演算法時經常問:「我應該用哪個演算法?」這個問題的答案取決於很多因素,包括:(1)數據的大小、質量和特性;(2)可用的計算時間;(3)任務的緊迫性;(4)你想用這些數據做什麼。
即使是經驗豐富的數據科學家在嘗試不同的演算法之前,也無法分辨哪種演算法會表現最好。雖然還有很多其他的機器學習演算法,但本篇文章中討論的是最受歡迎的演算法。如果你是機器學習的新手,這將是一個很好的學習起點。
❾ 如何讓機器學習得更快
如何更好地掌握機器學習Colorado是伯克利大學的在讀博士,同時也是Metacademy的創始人。Metacademy是一個優秀的開源平台,許多專業人員共同在這個平台上編寫wiki文章。目前,這些文章主要圍繞著機器學習和人工智慧這兩個主題。在Colorado的建議中,更好地學習機器學習的方法就是不斷的通過書本學習。他認為讀書的目的就是讓心中有書。一個博士在讀生給出這樣的建議並不令人驚訝,以前本站可能還推薦過類似的建議。這個建議還可以,但我不認為適用每個人。如果你是個開發者,想實現機器學習的演算法。下面列出的書籍是一個很好的參考,可以從中逐步學習。機器學習路線圖他的關於機器學習的路線圖分為5個級別,每個級別都對應一本書必須要掌握的書。這5個級別如下:Level0(新手):閱讀《DataSmart:》。需要了解電子表格、和一些演算法的高級數據流。Level1(學徒):閱讀《MachineLearningwithR》。學習在不同的情況下用R語言應用不同的機器學習演算法。需要一點點基本的編程、線性代數、微積分和概率論知識。Level2(熟練工):閱讀《》。從數學角度理解機器學習演算法的工作原理。理解並調試機器學習方法的輸出結果,同時對機器學習的概念有更深的了解。需要有演算法、較好的線性代數、一些向量積分、一些演算法實現經驗。Level3(大師):閱讀《ProbabilisticGraphicalModels:PrinciplesandTechniques》。深入了解一些高級主題,如凸優化、組合優化、概率論、微分幾何,及其他數學知識。深入了解概率圖模型,了解何時應該使用以及如何解釋其輸出結果。Leval4(宗師):隨便去學吧,記得反饋社區。Colorado針對每個級別中列出的書中章節閱讀建議,並給出了建議去了解的相關頂級項目。Colorado後來重新發布了一篇博客,其中對這個路線圖做了一點修改。他移除了最後一個級別,並如下定義了新的級別:好奇者、新手、學徒、熟練工、大師。他說道,Level0中的機器學習好奇者不應該閱讀相關書籍,而是瀏覽觀看與機器學習有關的頂級視頻。機器學習中被忽視的主題ScottLocklin也閱讀了Colorado的那篇博客,並從中受到了啟發,寫了一篇相應的文章,名為「機器學習中被忽視的想法」(文中有BorisArtzybasheff繪制的精美圖片)。Scott認為Colorado給出的建議並沒有充分的介紹機器學習領域。他認為很少有書籍能做到這一點,不過他還是喜歡PeterFlach所著的《MachineLearning:》這本書,因為書中也接觸了一些隱晦的技術。Scott列出了書本中過分忽視的內容。如下所示:實時學習:對流數據和大數據很重要,參見VowpalWabbit。強化學習:在機器人方面有過討論,但很少在機器學習方面討論。「壓縮」序列預測技術:壓縮數據發現學習模式。參見CompLearn。面向時間序列的技術。一致性預測:為實時學習精確估計模型。雜訊背景下的機器學習:如NLP和CV。特徵工程:機器學習成功的關鍵。無監督和半監督學習。這個列表很好的指出了機器學習中沒有注意到的領域。最後要說明的是,我自己也有一份關於機器學習的路線圖。與Colorado一樣,我的路線圖僅限於分類/回歸類型的監督機器學習,但還在完善中,需要進一步的調查和添加所有感興趣的主題。與前面的「讀這些書就可以了」不同,這個路線圖將會給出詳細的步驟。