導航:首頁 > 方法技巧 > 乘法速算方法與技巧進位

乘法速算方法與技巧進位

發布時間:2022-07-20 20:19:24

Ⅰ 速算乘法技巧

全腦速算
全腦速算是模擬電腦運算程序而研發的快速腦算技術教程,它能使兒童快速學會腦算任意數加、減、乘、除、乘方及驗算。從而快速提高孩子的運算速度和准確率。
全腦速算的運算原理:
通過雙手的活動來刺激大腦,讓大腦對數字直接產生敏感的條件反射作用,達到快速計算的目的。
(1)以手作為運算器並產生直觀的運算過程。
(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。
例如:6752 + 1629 = ?
運算過程和方法: 首位6+1是7,看後位(7+6)滿10,進位進1,首位7+1寫8,百位7減去6的補數4寫3,(後位因5+2不滿10,本位不進位),十位5+2是7,看後位(2+9)滿10進1,本位7+1寫8,個位2減去9的補數1寫1,所以本題結果為8381。
全腦速算乘法運算部分原理:
假設A、B、C、D為待定數字,則任意兩個因數的積都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比較適用於C能整除A×D的乘法,特別適用於兩個因數的「首數」是整數倍,或者兩個因數中有一個因數的「尾數」是「首數」的整數倍。
兩個因數的積,只要兩個因數的首數是整數倍關系,都可以運用此方法法進行運算,
即A =nC時,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396

加法速算
計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣 ——「本位相加(針對進位數) 減加補,前位相加多加一 」就可以徹底解決任意位數從高位數到低位數的加法速算問題。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

減法速算
計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣 ——「本位相減(針對借位數) 加減補,前位相減多減一 」就可以徹底解決任意位數從高位數到低位數的減法速算問題。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數×10。
速算嬗數|=(a-c)×d+(b+d-10)×c,,
速算嬗數‖=(a+b-10)×c+(d-c)×a,
速算嬗數Ⅲ=a×d-『b』(補數)×c 。 更是獨秀一枝,無以倫比。
(1),用第一種速算嬗數=(a-c)×d+(b+d-10)×c,適用於首同尾任意的任意二位數乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗數一目瞭然分別等於「8」,「20 」和「8」即可。
(2), 用第二種速算嬗數=(a+b-10)×c+(d-c)×a適用於一因數的二位數之和接近等於「10」,另一因數的二位數之差接近等於「0」的任意二位數乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗數也同樣可以一目瞭然分別等於「2」,「5 」和「0」即可。
(3), 用第三種速算嬗數=a×d-『b』(補數)×c 適用於任意二位數的乘法速算。

Ⅱ 二位數乘法速算技巧有哪些

方法1:平方差公式。比如37×43=40×40-9=1591

如果能熟悉1-99的平方,兩位數乘法會輕松很多。不用去硬背,1-99的平方數是有規律的。

方法2:利用特殊數字

1001=7×11×13

111=3×37

等等,例如37×78=111×26=2886。

這是用的最多的方法,其他的轉化方法就因人而異了,總之就是盡可能將乘法簡單化。

(2)乘法速算方法與技巧進位擴展閱讀:

3×5表示5個3相加

5x3表示3個5相加。

乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。

乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。

Ⅲ 十位數乘法速算技巧是什麼

1、十幾乘十幾:

口訣:頭乘頭,尾加尾,尾乘尾。

例:12×14=?

解:1×1=1 2+4=6 2×4=8 12×14=168

註:個位相乘,不夠兩位數要用0佔位。

2、頭相同,尾互補(尾相加等於10):

口訣:一個頭加1後,頭乘頭,尾乘尾。

例:23×27=?

解:2+1=3 2×3=6 3×7=21 23×27=621

註:個位相乘,不夠兩位數要用0佔位。

3、第一個乘數互補,另一個乘數數字相同:

口訣:一個頭加1後,頭乘頭,尾乘尾。

例:37×44=?

解:3+1=4 4×4=16 7×4=28 37×44=1628

註:個位相乘,不夠兩位數要用0佔位。

乘法運演算法則:

1、單項式多項式

單項式與多項式相乘,就是根據分配律,用單項式去乘多項式的每一項,再把所得的積相加。

注意:單項式乘以多項式,結果還是一個多項式,而且項數恰好與相乘以前那個多項式的項數相同。

2、多項式法則

多項式的乘法法則:(a+b)(m+n)=am+an+bm+bn(a、b、m、n都是單項式)

(a+b)²=a²+b²+2ab

(a-b)²=a²+b²-2ab

Ⅳ 三位數的乘法速算

三位數的乘法速算

1、個位數上下相乘。

2、個位數和十位數交叉相乘積相加(有進位的加進位)。

3、個位數和百位數交叉相乘加上十位數上下相乘(有進位的加進位)。

4、十位數和百位數交叉相乘積相加(有進位的加進位)。

5、百位數上下相乘(有進位的加進位)。

比如:125 X 125,尾數相乘5X5=25直接寫在十位和個位上,首數12加上1為13,再兩數相乘13X12=156。兩計算結果相連:15625。

(4)乘法速算方法與技巧進位擴展閱讀

1、三位數與兩位的個位和個位要對齊,十位數要跟十位數對齊。

2、用兩位數的個位分別與三位數的每一位數相乘,在用兩位數的十位分別與三位數的每一位數相乘,乘結果的個位要與前面結果的十位對齊,然後兩個結果相加就得到三位數乘兩位數的結果。

3、三位數的乘法先用數a的個位依次與數b的各位(個、十、百)相乘,再用數a的十位依次與數b的各位(個、十、百)相乘,然後用數a的百位依次與數b的各位(個、十、百)相乘,最後把三次的乘積相加。

Ⅳ 數學乘法速算方法

1.十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6.十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一

Ⅵ 兩位數乘兩位數進位乘法速算方法

兩位數乘兩位數進位乘法的速算其實很簡單,任意兩位數乘法
方法:尾數相乘,對角相乘再相加,首數相乘
【例】
3 7
X 6 2

---------
2 2 9 4
(1)尾數相乘7X2=14(滿十進位)
(2)對角相乘3X2=6;7X6=42,兩積相加6+42=48(滿十進位)
(3)首數相乘3X6=18加上十位進上的4為18+4=22
(4)把計算結果相連即為所求結果。

Ⅶ 兩位數乘法心算有什麼快又簡單的方法

一、兩位數乘兩位數。
1.十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。

2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。

3.第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。

4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861

5.11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。

6.十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。

數學中關於兩位數乘法的「首同末和十」和「末同首和十」速演算法。所謂「首同末和十」,就是指兩個數字相乘,十位數相同,個位數相加之和為10,舉個例子,67×63,十位數都是6,個位7+3之和剛好等於10,我告訴他,象這樣的數字相乘,其實是有規律的。就是兩數的個位數之積為得數的後兩位數,不足10的,十位數上補0;兩數相同的十位取其中一個加1後相乘,結果就是得數的千位和百位。具體到上面的例子67×63,7×3=21,這21就是得數的後兩位;6×(6+1)=6×7=42,這42就是得數的前兩位,綜合起來,67×63=4221。類似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我給他講了這個速算小「秘訣」後,小傢伙已經有些興奮了。在「糾纏」著讓我給他出完所有能出的題目並全部計算正確後,他又嚷嚷讓我教他「末同首和十」的速算方法。我告訴他,所謂「末同首和十」,就是相乘的兩個數字,個位數完全相同,十位數相加之和剛好為10,舉例來說,45×65,兩數個位都是5,十位數4+6的結果剛好等於10。它的計演算法則是,兩數相同的各位數之積為得數的後兩位數,不足10的,在十位上補0;兩數十位數相乘後加上相同的個位數,結果就是得數的百位和千位數。具體到上面的例子,45×65,5×5=25,這25就是得數的後兩位數,4×6+5=29,這29就是得數的前面部分,因此,45×65=2925。類似,11×91=1001,83×23=1909,74×34=2516,97×17=1649。

為了易於大家理解兩位數乘法的普遍規律,這里將通過具體的例子說明。通過對比大量的兩位數相乘結果,我把兩位數相乘的結果分成三個部分,個位,十位,十位以上即百位和千位。(兩位數相乘最大不會超過10000,所以,最大隻能到千位)現舉例:42×56=2352

其中,得數的個位數確定方法是,取兩數個位乘積的尾數為得數的個位數。具體到上面例子,2×6=12,其中,2為得數的尾數,1為個位進位數;
得數的十位數確定方法是,取兩數的個位與十位分別交叉相乘的和加上個位進位數總和的尾數,為得數的十位數。具體到上面例子,2×5+4×6+1=35,其中,5為得數的十位數,3為十位進位數;
得數的其餘部分確定方法是,取兩數的十位數的乘積與十位進位數的和,就是得數的百位或千位數。具體到上面例子,4×5+3=23。則2和3分別是得數的千位數和百位數。

因此,42×56=2352。再舉一例,82×97,按照上面的計算方法,首先確定得數的個位數,2×7=14,則得數的個位應為4;再確定得數的十位數,2×9+8×7+1=75,則得數的十位數為5;最後計算出得數的其餘部分,8×9+7=79,所以,82×97=7954。同樣,用這種演算法,很容易得出所有兩位數乘法的積。

Ⅷ 速算的技巧與方法

速算方法與技巧
速算的技巧和方法一、10-20的兩位數乘法及乘方速算方法:尾數相乘,被乘數加上乘數的尾數(滿十進位)【例1】12X13---------156(1)尾數相乘2X

Ⅸ 誰知道乘法運算的各種技巧

比如:11*11=121之類的

一、乘法速演算法:
特例一:兩位數乘兩位數,只要十位數相同,個位數相加等於10的。都能用這種演算法。只需用十位數乘以比它大一的數,加上後兩位數相乘即可。如果後兩位數相乘只有一位時,前面要補0。如31*39=?先用3乘以比它大一的數4,為12,加上後兩位數相乘1*9=9,只有一位,前面補0,為09,所以 31*39=1209。它的原理是:假若這兩個兩位數分別為ab=10a+b,ac=10a+c,且b+c=10。
則ab*ac=(10a+b)*(10a+c)=100a^2+10a(b+c)+bc=100a^2+100a+bc
=a(a+1)*100+bc,可以看到,只需用十位數a乘以比它大一的數a+1,然後補上兩個位數的乘積bc,即可。
這裡面又有一個特例,凡個位數為5的數的平方的速算。如35的平方,就是3*4=12,後面直接補上25,即得35^2=1225。現在您自己也可試下:95^2=9025。還可推廣到小數,如6.5^2=?先算6*7=42,後面直接補上.25即可。所以6.5^2=42.25。

特例二:求11......1的平方。通常針對9個1以下的數的平方速算。方法是:有幾個1,就由1寫到幾,再由大到小寫到1。比如1111^2 =?有4個1,結果就是1234321。111111=?有六個1,就寫到12345654321。你現在試下11111111^2=?

特例三:求99......9的平方。通常針對9個1以下的數的平方速算。方法是:用平方差公式速算。原理是:a^2=a^2-1+1=(a+ 1)(a-1)+1。描述為:先將此N位數減1,再補上N個0,再加上1,即為所求。所以求999的平方就是:999^2=(999-1)(999+1) +1=998*1000+1=998001。現在您也可以速算99999^2=?了。口中直接說出9999800001。

特例四:四位數9999乘四位數的速算。原理為:9999*abcd=(10000-1)*abcd=abcd0000-abcd=(abcd- 1)*10000+10000-abcd=(abcd-1)*10000+9999-(abcd-1)。所以9999乘四位數的原理是:先將要乘的四位數減1,這是前四位,而後四位再補上9999減去(abcd-1)的差值。這明顯是特例,如將9999換成其它四位數就失效。
····························
二、平方差法:
實例一:359999是合數還是質數?
答:359999是合數。理由如下:
359999
=360000-1
=600^2-1
=(600+1)×(600-1)
=601×599
由於359999可以分解為兩個大於1的正整數相乘,所以它是個合數。
可以看出,直接分解是相當麻煩和困難的。
三、裂項相消法:
實例:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+…+1/(a+2002)(a+2003)=???
解: 原式=1/a-1/(a+1)+1/(1+a)-1/(a+2)+.....+1/(a+2002)-1/(a+2003)
=1/a-1/(a+2003)
=2003/a(a+2003)
=2003/(a^2+2003a)

Ⅹ 乘法快速計算技巧

兩位數乘法的速算方法:尾積為尾。內積+外積為中。頭積為前。遇到進位往前加。這就是我們兩位數乘以兩位數的口訣。
乘法速算技巧_、_位數是1的兩位數相乘。乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿_前_。
30以內的兩個兩位數乘積的心算速算,兩個因數都在20以內。任意兩個20以內的兩個兩位數的積,都可以將其中一個因數的」尾數」移加到另一個因數上,然後補一個0,再加上兩「尾數」的積。
兩個因數分別在10至20和20至30之間,對於任意這樣兩個因數的積,都可以將較小的一個因數的「尾數」的2倍移加到另一個因數上,然後補一個0,再加上兩「尾數」的積。

閱讀全文

與乘法速算方法與技巧進位相關的資料

熱點內容
女兒默契訓練方法 瀏覽:82
mx3跳屏解決方法 瀏覽:732
高壓鍋使用方法和步驟英語說 瀏覽:609
水光面膜粉色使用方法 瀏覽:543
跨境電商物流滯後的解決方法 瀏覽:113
醫院常用消毒方法及原理 瀏覽:29
高中階段學習方法與技巧 瀏覽:700
小孩咳嗽用什麼方法好 瀏覽:848
園林檢測方法 瀏覽:20
怎麼去濕氣最好的方法 瀏覽:562
戴爾平板字體大小在哪裡設置方法 瀏覽:882
卵磷脂的食用方法 瀏覽:340
18種科學鍛煉方法 瀏覽:447
如何克服心理的方式方法 瀏覽:817
物理研究方法一共有幾種 瀏覽:391
用什麼方法可以把手機變成藍牙 瀏覽:489
想把真皮斑淡化有什麼土方法 瀏覽:519
恩蘋果手機簡訊歸類處理方法 瀏覽:946
工程圖紙問題及解決方法 瀏覽:547
s6藍牙耳機使用方法 瀏覽:974