『壹』 如何快速算加減法
這個要通過多計算,多計算就能算得快。
一、認真安排好你的時間。首先你要清楚一周內所要做的事情,然後制定一張作息時間表。在表上填上那些非花不可的時間,如吃飯、睡覺、上課、娛樂等。安排這些時間之後,選定合適的、固定的時間用於學習,必須留出足夠的時間來完成正常的閱讀和課後作業。當然,學習不應該占據作息時間表上全部的空閑時間,總得給休息、業余愛好、娛樂留出一些時間,這一點對學習很重要。一張作息時間表也許不能解決你所有的問題,但是它能讓你了解如何支配你這一周的時間,從而使你有充足的時間學習和娛樂。
二、學習前先預習。這就意味著在你認真投入學習之前,先把要學習的內容快速瀏覽一遍,了解學習的大致內容及結構,以便能及時理解和消化學習內容。當然,你要注意輕重詳略,在不太重要的地方你可以花少點時間,在重要的地方,你可以稍微放慢學習進程。
三、充分利用課堂時間。學習成績好的學生很大程度上得益於在課堂上充分利用時間,這也意味著在課後少花些功夫。課堂上要及時配合老師,做好筆記來幫助自己記住老師講授的內容,尤其重要的是要積極地獨立思考,跟得上老師的思維。
『貳』 怎樣提高小學生的計算能力有什麼好的辦法
家長如果想提高小學生的計算能力的話,就得讓孩子接觸一些數學題。家長要激發孩子對數學的興趣,並且要讓孩子自己去嘗試。有的孩子在學習當中會想有比賽的行為,父母也可以讓孩子自己去評選。爸爸媽媽要掌握住孩子學習的一些問題,然後再給孩子做好分析。父母不要一味的去幫助孩子,一定要知道孩子適合什麼。在孩子需要肯定的時候,父母就得站在孩子的身邊對孩子鼓勵。
總的來講數學對小學生來講是非常重要的,父母也得把握住關鍵。孩子的學習是有關鍵期的,所以父母知道孩子在該學習的時候應該如何提升。家長要知道如果孩子小的時候不好好學習數學知識,等孩子上初中之後就會出現跟不上的情況。家長可以慢慢的去幫孩子不必著急,孩子也能夠去明白。
『叄』 怎麼讓小孩快速學會加減法
第一步:讓孩子熟練地學會數數
我們忽略了很多孩子只會從「1」開始數,如果你讓他從中間的某個數開始數,他們可能就不知道數了。或者說孩子不知道從9—10、19—20、29—30這種整數上跳數。
在孩子剛剛開始學習的時候,一定要讓孩子把這段話說出來,不管運用哪種方法,都需要學生在計算時,說出算理,學生在熟知算理的基礎,慢慢將算理內化到心裡,形成口算的基礎。
10以內的加減是20以內的加減的基礎,這個基礎是以2--10的分成為基礎的,可以用10根小棒,來讓孩子摸索掌握,這樣理解就會更深刻一些,也不會要求孩子去死記硬背,其實是在游戲中掌握了10以內的分成。
『肆』 怎樣能讓學生快速學會掌握簡單計算
如何培養學生的簡便計算能力
三毛小學 朱曉君
在小學數學教學中,學生計算能力的高低直接影響著學生學習的質量。計算的教學是支撐小學數學教學的最基本框架,占據著小學數學一半的教學時間。《新課標》指出簡便演算法的教學是小學數學教學的重要組成部分,讓學生掌握簡便運算的方法,是提高學生運算速度的重要途徑。在教學中必須重視簡便運算思維靈活性的學習,正確理解簡便運算的涵義,合理的進行簡便計算,使學生的思維能力得到提高,思維空間得到更好的發展。
小學四年級數學中簡便運算方法比較多,要達到簡便運算的目的,不僅要讓學生靈活運用加法、乘法的交換律和結合律、乘法的分配律、減法的性質、除法的性質。還要掌握一些特殊的數據的變化規律才能提高運算速度,並能更好地培養學生靈活性。那麼如何提高學生的簡便計算能力呢?下面我談談自已的拙見。
一、平時增強「化整」、「湊整」的訓練,為學好簡便演算法作準備。 我們的數學教育目標不僅要強調知識的掌握技能的形成而且要更加關注學生的數學意識、數學思想的培養。學生簡便意識的培養,優化思想不是一朝一夕可以完成的,而應靠平時的日積月累。所以在簡便計算的教學中,我們還要提前滲透學生「變整化」、「湊整化」的數學簡算思想。在教學簡便方法之前我就經常讓學生做加數中含有整十、整百的加法口算題,讓學生明白這樣的題目很好算又容易做得正確。也把25×4=100、125×8=1000這兩個特殊的化整算式牢牢記住。如在教學75+168+25、245+180+20+155這種類型的算式時就需要用加法的交換律和結合律把加數中能湊成整十或整百的數字湊在一起。這樣算起來就會更加簡便。所以我在平時總會抽出一些時間對學生進行一些湊整的訓練。
我是這樣訓練的:老師先說一個兩位數如33,然後讓學生快速的說出能與它湊成一百的兩位數來是67。通過這樣的反復訓練後,我和同學總結出能湊成整百的兩位數的特徵:個位數湊成十,十位數湊成九,這樣的兩位數就能湊成一百。這樣的湊整訓練始終貫穿於整個簡便演算法的教學中。由於滲透了「湊整」數學思想,那麼學生面對以後其它的一些計算問題時就站得更高、思路更廣,對「簡便計算」也就更容易理解、更容易掌握。在滲透這些數學思想的同時,我們特別要訓練提高學生對一些「特殊值」的敏感度。如果我們能對這些數字加以重點研究,訓練學生基本的運算,就能形成一種思維定勢,以後看到這些敏感的數字就能立即想到可以運用簡便方法進行計算。
二、理解運算定律和運算性質是學習簡便計算的前提。
概念是思維的基本形式,也是判斷和推理的起點。只有概念明確才能作出正確的判斷及合乎邏輯的推理,有些計算的錯誤是由於學生對數學中某一概念不清引起來。如在計算36×99=36×100—1=3600—1=3599 很明顯就是由於算理不明,概念不理解的原因造成的。36×99表示99個36相加,簡算的過程中,把它看成36×100表示的是100個36相加,也就是增加了「一個36」而不是一個「1」。有的學生由於沒有真正理解加、減、乘、除的算理而且計算熟練程度不夠,往往就會弄巧成拙。教學時應該重視基礎知識,必須使學生理解與掌握各種與運算有關的概念、性質、公式、算律等,弄清它們的來龍去脈及各種應用,常出些與它們有關的正誤辨析,正用逆用的系列練習,使學生有著扎實的基礎,保證運算的准確性。有的學生實在對概念和運算定律不能夠理解的,我就自己編了一些即簡明扼要又順口的句子來幫助學生來理解。如568-47-153=568-(47+153)=568-200 ; 359-(159+230)=359-159-123 1600÷25÷4=1600÷(25×4) ;350÷(7×2)=350÷7÷2 =50÷2
在教學第一種減法的運算性質類型的題時,我就讓學生觀察這道題連續減兩次不簡便,而兩位減數能湊成一百,我們不如把它們合起來一次減掉。我們可以總結出這樣一句,減兩次不簡便,不如把兩個數「和」起來減一次。相反在遇到一個數減去兩個數的和,我們也可以說,和起來減一次不簡便;不如分開減兩次。 同樣在教學第二種除法的性質時,我們也可以總結出,除兩次不簡便不如把兩個數的乘起來除一次。乘起來除一次不簡便不如分開除兩次。
三、培養學習興趣是學習簡便計算的動力。
興趣是孩子各種創造力、求知慾的原動力。只要孩子對某種事物發生興趣就會無止境的追求,去實踐去發展。
『伍』 數學簡便計算,有哪幾種方法
簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。
它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。
就像68+77=?
大多數人不一定立刻能算出結果,
如果換成70+75=?
相信每一個人都可以一口算出和是145。
這里其實就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇見復雜的計算式時,
先觀察有沒有可能湊整,
湊成整十整百之後再進行計算,
不僅簡便,而且避免計算出錯。
①加減湊整
【例題1】999+99+29+9+4=?
題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例題2】5999+499+299+19=?
看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。
沒有槍沒有炮,自己去創造!
先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分組湊整
在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。
【例題3】100-95+92-89+86-83+80-77=?
題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。
根據加法減法運算性質,我們給相鄰的項加上括弧。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。
③提取公因數法
這就需要用到乘法分配律提取公因數,
又稱為提取公因數法。
如果沒有公因數,我們可以採取乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例題4】47.9x6.6+529x0.34=?
很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。
『陸』 如何進行計算方法的教學
如何進行計算方法的教學
傳統的小學計算教學常常通過機械重復、大題目量的訓練,只重視計算的結果,不重視計演算法則的形成過程和計算方法的概括。而在課改初期,教師們認識到了原有教學模式的局限,大張旗鼓地開展自主學習,發揮學生的學習主動性。在計算教學中過分強調計算方法的多樣化,教師沒有起到很好的主導作用,課堂上遍地都是「你是怎麼想的」「還有其他不同的演算法嗎」「你喜歡怎麼算就怎麼算」。40分鍾的課堂教學經常都是你說我說,而減少了很多必要的練習,導致學生計算的能力不如以前嫻熟。那麼,計算教學應該如何扎實而不失靈活,我們一線教師又應該如何在傳統教學只重計算結果和只重計算方法這兩個極端中尋求兩者之間的平衡點呢?我曾經有過困惑,嘗試了計算教學的改革,以下談談我怎樣進行計算教學的。
一、計算教學與情境創設。
數學情境創設是指把生活中的實際問題提出來,讓學生產生認知沖突,進行探索,將實際問題逐步抽象成數學問題。
我認為在計算教學中創設一定的情境還是需要的,新課程標准明確指出:讓學生學習生活中的數學,感受數學與生活的密切聯系,並且能用數學知識解決生活中的實際問題。但創設的情境一定要符合學生的年齡特徵、貼近學生生活。我們要通過創設與學生生活緊密相關的生活情境,使學生感受到數學與現實世界的緊密聯系,激起對數學的興趣。主題圖要緊扣學生情況與教學實際進行適當處理。主題圖的選擇必須符合學生學習的實際情況,教師在教學設計時要仔細斟酌教材中的主題圖。當教材中的主題圖不吻合學生生活實際時,教師要靈活進行處理,如在執教的《兩位數加兩位數的口算》整堂課中,我都以學生的實際材料作為數學學習的情景,通過秋遊前的准備,乘車到旅遊區遊玩等一系列環節,把整堂課自然的串成一個生活情境,營造良好的學習氛圍。從學生們在課堂上興趣盎然、積極投入的表現看出,他們是這么喜歡這樣的課堂。德國教育家第斯多惠指出:教學的藝術不在於傳授的本領,而在於激勵、喚醒、鼓舞。創設教學情景也是激勵、喚醒、鼓舞的一種藝術。而近代心理學研究也表明:學生課堂思維是否活躍,主要取決於他們是否具有解決問題的需要。所以,課堂上,教師應調動起學生的求知慾望。此時,創設問題情景猶如一塊石頭投入學生的腦海,必會激起思維的浪花。可見,創設問題情景是教學中的一種重要手段。
二、正確區分情景在計算教學與解決問題中的不同作用。傳統的計算教學往往把計算與解決問題分割開來,純粹為了計算而教,使計算教學與現實生活明顯脫節。而課改初期,教師們往往設計了內容豐富的情景吸引學生學習,在教學過程中又沒有較好地把握情景與教學之間的合理關系,導致計算課與解決問題的課分不清楚。那麼,計算課要不要情景,怎樣用情景,我們也需要理性思考。我認為,計算教學需要情景,更要合理使用情景。如:二年級下冊兩位數加二位數的口算,有這樣一個情景。(1)二(1)班和二(2)班能合乘一條船嗎?(2)二(3)班和二(4)班能嗎?這塊計算內容,從乘船這個現實生活中提取學習材料,藉助生活情景激發學生的探究熱情。在設計情景時,意在讓學生通過一條船能坐68人和四個班各個班的人數這些相關的數學信息引出學習的計算內容。提出問題後重點解決31+23和32+39是怎麼計算的,如前者先算1+3=4,再算30+20=50,最後算50+4=54,後者先算32+30=62,再算62+9=71。即重點研究算理和演算法。如果把這個情景放在解決問題的課上,那麼主要解決為什麼要這樣列式31+23,是因為二(1)班和二(2)班的人數合起來就可以知道能不能合乘一條船,所以要用加法做,即分析所謂的數量關系,兩者的重點是完全不同的,計算教學的情景創設目的是從生活中提取數學素材,讓學生體驗數學與生活之間的關系。而解決問題要從具體情景中引導學生分析提供的數學信息與所求問題之間的關系,來引導學生探究解決問題的方法與策略,一旦偏離了這個中心,計算教學就會失去方向。
三、關於演算法多樣化與最優化。
計算方法既然存在著多樣化,那麼學生找出了自己的方法後,並認為哪種方法最適合自己,就應允許他使用。一種演算法不是上完一節課就被擱置,對於自己找到的方法,學生有一種積極的情感,在解決問題時,學生喜歡用自己的演算法,學生在解決問題過程中會不斷的反思,發現原來的方法又不適合自己,對自己的方法進行改進,從而找到最好的,這本身就是一個發展能力的過程。所以,在呈現演算法多樣化時,教師不必急於硬性給學生灌輸最優化的方法。讓學生在自己的摸索過程中得出最優化的方法。也符合認知的規律。比如在《兩位數加兩位數的口算》這節課中,23+31=,可以允許學生採用多種的計算方法,可用23+30=53,53+1=54;也可以用20+30=50,3+1=4,50+4=54;還可用豎式計算等等方法,只要學生能想出並能計算出正確的答案,就可允許他們用,等他們用了以後他們會找出最適合自己的方法。所以在後面的32+39=中,學生就能根據自己的實際選擇最優化的方法去進行計算。此外,把多種演算法進行優化,可以幫助學習有困難的學生適當掌握較理想的一種演算法,而不至於一節課下來,什麼方法也沒有學會。計算方法多樣化需要優化,需要適時優化。當然,計算方法多樣化也要遵循學生實際和教學內容的不同,當學生只能想出一種計算方法而且這種計算方法也是比較合理的方法時,教師不必為了追求多樣化而生硬地要求學生繼續思考還可以怎麼計算。
在教學時我是採用教學形式、學習方式靈活多樣化進行教學。新理念下提倡多樣化、現實的、有趣的、探索性的學習活動,使得學生的學習是基於主體的、積極的、自信的、主動探索的、合作交流的基礎,經歷獲得知識的過程的知識才是學生終身受用的。凡是學生能獨立思考,合作探索發現的我都決定不包辦代辦,把自己定位在教學活動的組織者、引導者,這樣才能更好地發掘學生的自立性、創造性。
做到讓學生多思考多動手多實踐,教學形式有分有合,方法多樣,這樣學生的參與面就廣。
三、多樣化的練習是計算教學的延伸。
數學計算教學的還有一個重要組成部分是鞏固練習。這是學生對所學知識的鞏固,是形成技能,技巧的重要途徑,而且可以發展學生的思維能力和創造能力,也是檢查學生掌握新知識情況的有力措施.,同時使學生及時了解自己練習的結果,品嘗成功的喜悅,提高練習的興趣,並且及時發現錯誤,糾正錯誤,提高練習的效果。傳統的計算教學只追求量不考慮形式,學生在枯燥的練習中熟練計算技能。而在課改初期重探究輕練習的教學模式務必造成學生計算不扎實的不良趨向。計算教學的理性回歸需要鞏固練習,而且需要考慮學生個體的不同形式的練習。計算課與應用題課、幾何課比較相對枯燥,練習的設計既要顧及知識的積淀,又要考慮學生的興趣。授課之後,教師緊緊圍繞教學目標,根據學生年齡特點精心設計多種形式的習題讓學生嘗試演算法的運用。通過練習、比較,發現錯誤,教師及時指導,矯正補缺,從而提高學生計算正確率和計算速度。計算教學的練習包括鞏固練習和綜合練習。鞏固性練習是基本練習,是例題的模仿練習,主要目的是鞏固所獲得的新知。綜合性練習指的是綜合性、靈活性較強並有一定變化發展的題目。其目的是脫離模仿,溝通知識的內在聯系,促使知識轉化為能力,還可以激發學生的興趣,把已獲得的知識能力上升到智力高度,培養學生的創新意識。這些練習的安排可採用不同的形式,如學生獨立算、同桌對口令、開小火車、搶答、學生自己編題等等不同的形式,提高學生的學習積極性。
總而言之,縱觀目前的計算教學,我們既要繼承傳統計算教學的扎實有效和發揚課改初期以人為本的教學理念,更要冷靜思考計算教學對學生後續學習能力的培養,在傳統教學與課改初期教學中總結經驗,不斷改善教學方法,使計算教學在算理、演算法、技能這三方面得到和諧的發展和提高,真正推崇扎實有效、尊重學生個性發展的理性計算教學。
『柒』 怎樣學好數學的簡便計算
1,簡便運算最常用的就是加法結合律,加法交換律,乘法結合律,乘法交換律,乘法分配律。這幾種運算定律要熟練掌握。
2,利用減法的性質的簡便,使用減法性質的簡便運算時理解一個數連續減去兩個數時,可以先減去一個數再減去另一個數,也可以減去後兩個的和。
3,利用除法商不變的性質進行簡便運算,被除數和除數同時乘以或除以相同的數(零除外)商不變。
注意幾點:
1,概念理解錯誤
道理不明白,對定律不理解,對知識理解不靈活,對問題理解片面,學習習慣差,粗心大意。
2,死搬硬套
在四則運算中,簡便運算普遍存在,但並不是所有的四則運算都能用簡便演算法。
3,靈活運用
在熟練掌握運算定律和運算性質的基本方法後,可以計算一些較難的簡算題。
『捌』 如何學會口算心算速算
能心算這些明顯需要筆算的計算題。我來算算:678+456=?通常遇到三位數運算列豎式最靠譜,現在我來套用書里講到的交換律、結合律的方法,
678+456=600+70+8+400+50+6=600+400+70+50+8+6=1134
的確是拆分成整數更好算,其實列豎式不只是孩子會忘記進位那個點。
加法口算相對容易,那再來試試兩位數乘法,我覺得乘法離開豎式,真的很難搞定啊。74×12=?我們看看書里的心算慢動作回放:
74×12=74×(10+2)=74×10+74×2=888
運算過程這樣展示,孩子也看得明白,的確和整十相乘,相對簡單。
我也試試小數題,這個孩子沒學到,我單獨體驗,因為小數問題屬於易錯題,尤其是小數點後面數位不同時,列豎式時就容易出錯。
3.5-1.51=?先把前後項都減去1.5得到2-0.01=1.99,書中用的是強弱減法算,把算式里的數字盡量簡化成一個整數和一位小數的計算。看懂了這道題那麼下道題理解起來就不難了。
小數分數轉化: 49÷87.5=? 49÷87.5=0.49÷0.875=0.49÷7/8=0.49×8/7=0.56
第二,數學公式,能學到的有限,要拓展自己學不到的那部分
《10倍速心算》這本書聚集了很多不同的心算解題方法,心算的確是要找數字間的規律,面對不同的算式,能在諸多解題方案里找到最簡便的方法,這是我最初的認知,其實也真需要記住方法然後也套用。但學習《10倍速心算》書里方更多法的,覺得其實不止是套用,更多時候是可以直接通過數字關聯和運算符號,提醒自己怎麼計算才更簡單。當然熟知方法是基礎,這樣思路才能打得開。這就是本書專欄里介紹到的學不到那部分知識,是通過熟練各種計算方法後自主探尋,總結出的方法,到這個境界真的需要用一些功力了。
『玖』 如何快速的學會簡便計算
簡便運算實質就是對三大定律及基本性質的運用,三大定律就是我們熟知的交換律、結合律和分配率。對於培養小學高年級學生的計算能力、學生具有簡便運算的意識,及審題習慣,學會正確利用數的特徵的方法進行簡算,並逐步提高這方面的能力,切實提高簡算的水平,特別對提高學生計算的准確性、靈活性、創造性都有著舉足輕重的作用,也是小學數學課堂教學的一個重要目標,怎樣才能讓小學中高年級的學生更准確的掌握呢?我認為主要有以下的幾種類型可以使一些計算更簡便。這幾種類型無論對整數、小數還是分數的簡算都適用。
一、 運用交換律使一些計算更簡便
交換律文字表達式為:a + b = b + a或a ×b = b × a。在怎樣的情況下我們運用交換律呢?由上式不難發現有兩個或兩個以上的數連加或連乘的情況下運用交換律。例如:0.7+3.9+4.3+6.1;25×36×4這類型的題中。那怎樣進行交換呢?也就是說把誰和誰交換,這是解題的關鍵。先在這里介紹一種叫做「湊整」的數學思想,看那兩個數放在一塊恰好湊成整十整百或整千的數。那麼怎樣湊更簡單呢?就是把一個數與另一個數的最後一位相加或相乘看恰好是否湊成整十整百或整千的數,就把這兩個數交換放到一塊,會達到事半功倍的的效果,會使一些計算更簡便。
二、 運用結合率使一些計算更簡便
結合律的文字表達式:(a + b)+ c = a +( b + c )或a × ( b × c) = ( a × b ) × c。由表達式不難發現結合律就是3個或3個以上的數相加或相乘時運用結合律使一些計算更簡便。它和交換律的思想相似,那麼「湊整」的數學思想對它同樣適用,就是看相鄰的那兩個數的最後兩個數字相加或相乘恰好是整十整百或整千的數,我們就把這兩個數用括弧括起來,然後再計算。
三、運用分配率使一些計算更簡便
分配率就是乘法對加法的分配,文字表達式:a × ( b + c ) = a × b + a × c。通過表達式不難發現在分配的過程中要給括弧里的兩個數同時分配,這是解這類題的關鍵,也是大多數同學易出錯的一個誤區。這類題主要有兩類,實質後一類也是前一類的還原或劃歸。
第一類,a × ( b + c ),有表達式不難發現a與b或a與c相乘再加比b與c先加再與a相乘更簡便,在計算過程中要始終記清楚給兩個數同時分配。
第二類,a × b + a × c。實質就是第一類a× ( b + c )的還原或倒過來寫等式同樣成立。通過表達式不難發現該類題型當中有一個共同的數a,在計算時可以把這個共同的數a提到括弧的外邊,括弧里是另兩個數的「和」或「差」根據題意來寫。
四、 其它特殊類及基本性質的簡算
第一、整數與整數相乘。
例如37×101,這類型的題我們做時看那個數更接近整十整百或整千等,根據題意把這個整十整百或整千的數寫成整十整百或整千加多少(減多少),並把他們用括弧括起來,再與另一個整數相乘更簡便。
第二、整數和分數相乘。
例如:33×,整數與分數相乘計算時為了約分簡便或便於約分,將整數寫成分數的分母加上或減去一個數恰好和整數相等,再用括弧括起來計算會更簡便。
第三、減法性質。
文字表達式:a-b-c,這也是一類典型的簡算題,簡算時直接寫成 a-( b + c ),反過來也成立,即a - ( b + c )= a – b - c也成立
第四、除法性質。
文字表達式:a÷b÷c,簡算時直接寫成a÷(b×c),反過來同樣也成立,a÷(b×c) =a÷b÷c這也是一類非常典型的簡算題。
五、觀察題目特徵,選擇合適的簡算方法
對於小學生而言,掌握某種具體的簡算方法並不困難,經常出現的問題在於不能細心讀題、審題,關鍵要准確抓住題目特徵,繼而選擇合理的簡算方法,因此,要培養學生細心觀察、認真審題的習慣。要求學生做到:一看、二想、三做、四查。要求學生在讀題時,一要看清內容:題里有哪幾個數,它們之間存在哪幾種運算關系;二要想一想,能不能簡算?怎樣簡算?應用什麼定律或運算性質進行簡算?三做在明確目的方法後動筆細心計算;四查做好後認真檢查,可以預防錯誤,還可以使簡算方法更合理。