1. 因式分解的方法
分解方法:
一、十字相乘法
十字相乘法的方法簡單來講就是:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。其實就是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。
如:
a²x²+ax-42
首先,我們看看第一個數,是a²,代表是兩個a相乘得到的,則推斷出(ax+?)×(ax+?),
然後我們再看第二項,+ax這種式子是經過合並同類項以後得到的結果,所以推斷出是兩項式×兩項式。
再看最後一項是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2。
首先,21和2無論正負,通過任意加減後都不可能是1,只可能是-19或者19,所以排除後者。
然後,再確定是-7×6還是7×-6。
(ax-7)×(ax+6)=a²x²-ax-42(計算過程省略)
得到結果與原來結果不相符,原式+ax 變成了-ax。
再算:
(ax+7)×(ax+(-6))=a²x²+ax-42
正確,所以a²x²+ax-42就被分解成為(ax+7)×(ax-6),這就是通俗的十字相乘法分解因式。
二、公式法
公式法,即運用公式分解因式。
公式一般有
1、平方差公式a²-b²=(a+b)(a-b)
2、完全平方公式a²±2ab+b²=(a±b)²對應的還可以有一個口訣:「首平方,尾平方,首尾積的二倍在中央」
2. 。教一下,因式分解。謝謝,七年級得數學!要步驟完整。。。
01
提公因式法
①公因式:各項都含有的公共的因式叫做這個多項式各項的~.
②提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括弧外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的.如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數是正的.
>02
運用公式法
①平方差公式:.a^2-b^2=(a+b)(a-b)
②完全平方公式:a^2±2ab+b^2=(a±b)^2
※能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍.
>03
分組分解法
分組分解法:把一個多項式分組後,再進行分解因式的方法.
分組分解法必須有明確目的,即分組後,可以直接提公因式或運用公式.
>04
拆項、補項法
拆項、補項法:把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解;要注意,必須在與原多項式相等的原則進行變形.
※多項式因式分解的一般步驟:
①如果多項式的各項有公因式,那麼先提公因式;
②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;
③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解;
④分解因式,必須進行到每一個多項式因式都不能再分解為止。
>05
配方法:對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。
>06
換元法:有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。
>07
待定系數法:首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
3. 七年級因式分解要點
因式分解的十二種方法 :
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解。因式分解的方法多種多樣,現總結如下:
1、 提公因法
如果一個多項式的各項都含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。
例1、 分解因式x -2x -x(2003淮安市中考題)
x -2x -x=x(x -2x-1)
2、 應用公式法
由於分解因式與整式乘法有著互逆的關系,如果把乘法公式反過來,那麼就可以用來把某些多項式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考題)
解:a +4ab+4b =(a+2b)
3、 分組分解法
要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,並提出公因式a,把它後兩項分成一組,並提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
對於mx +px+q形式的多項式,如果a×b=m,c×d=q且ac+bd=p,則多項式可因式分解為(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添項法
可以把多項式拆成若幹部分,再用進行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)
7、 換元法
有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。
例7、分解因式2x -x -6x -x+2
解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多項式f(x)=0,求出其根為x ,x ,x ,……x ,則多項式可因式分解為f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
解:令f(x)=2x +7x -2x -13x+6=0
通過綜合除法可知,f(x)=0根為 ,-3,-2,1
則2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 圖象法
令y=f(x),做出函數y=f(x)的圖象,找到函數圖象與X軸的交點x ,x ,x ,……x ,則多項式可因式分解為f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
解:令y= x +2x -5x-6
作出其圖象,見右圖,與x軸交點為-3,-1,2
則x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先選定一個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此題可選定a為主元,將其按次數從高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
將2或10代入x,求出數P,將數P分解質因數,將質因數適當的組合,並將組合後的每一個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。
例11、分解因式x +9x +23x+15
解:令x=2,則x +9x +23x+15=8+36+46+15=105
將105分解成3個質因數的積,即105=3×5×7
注意到多項式中最高項的系數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值
則x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系數法
首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
例12、分解因式x -x -5x -6x-4
分析:易知這個多項式沒有一次因式,因而只能分解為兩個二次因式。
解:設x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
則x -x -5x -6x-4 =(x +x+1)(x -2x-4)
4. 七年級下冊因式分解要點,公式,習題和答案
分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行.
分組時要用到添括弧:括弧前面是「+」號,括到括弧里的各項都不變符號;括弧前面是「-」號,括到括弧里的各項都改變符號.
當多項式的項數較多時,可將多項式進行合理分組,達到順利分解的目的。當然可能要綜合其他分法,且分組方法也不一定唯一。
第4課 因式分解
〖知識點〗
因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
〖大綱要求〗
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
〖考查重點與常見題型〗
考查因式分解能力,在中考試題中,因式分解出現的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
因式分解知識點
多項式的因式分解,就是把一個多項式化為幾個整式的積.分解因式要進行到每一個因式都不能再分解為止.分解因式的常用方法有:
(1)提公因式法
如多項式
其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式.
(2)運用公式法,即用
寫出結果.
(3)十字相乘法
對於二次項系數為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則 對於一般的二次三項式 尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行.
分組時要用到添括弧:括弧前面是「+」號,括到括弧里的各項都不變符號;括弧前面是「-」號,括到括弧里的各項都改變符號.
§2.2提公因式法
教學目的和要求: 經歷探索多項式各項公因式的過程,並在具體問題中,能確定多項式各項的公因式;會用提公因式法把多項式分解因式(多項式中的字母指數僅限於正整數的情況);進一步了解分解因式的意義,加強學生的直覺思維並滲透化歸的思想方法.
教學重點和難點:
重點:是讓學生理解提公因式的意義與原理。
難點:能確定多項式各項的公因式
關鍵:是讓學生理解提公因式的意義與原理。
2. (1)多項式ab+bc各項都含有相同的因式嗎?多項式3x2+x呢?多項式mb2+nb呢?
(2)將上面的多項式分別寫成幾個因式的乘積,說明你的理由,並與同位交流。
答案:(1)多項式ab+bc各項都含有相同的因式b,多項式3x2+x各項都含有相同的公因式x,多項mb2+nb各項都含有相同的公因式b。
2.3運用公式法
教學目的和要求: 經歷通過整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的過程,發展學生的逆向思維和推理能力;運用公式法(直接用公式不超過兩次)分解因式(指數是正整數)
教學重點和難點:
重點:發展學生的逆向思維和推理能力
難點:能夠理解、歸納因式分解變形的特點,同時也可以充分感受到這種互逆變形的過程和數學知識的整體性.
因式分解的方法
因式分解沒有普遍的方法,初中數學教材中主要介紹了提公因式法、公式法。而在競賽上,又有拆項和添項法,分組分解法和十字相乘法,待定系數法,雙十字相乘法,輪換對稱法,剩餘定理法等。
[編輯本段]基本方法
⑴提公因式法
各項都含有的公共的因式叫做這個多項式各項的公因式。
如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。
具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的;取相同的多項式,多項式的次數取最低的。
如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數成為正數。提出「-」號時,多項式的各項都要變號。
例如:-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a^2+1/2變成2(a^2+1/4)不叫提公因式
⑵公式法
如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍。
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
1.因式分解abc+ab-4a=a(bc+b-4)
2.因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)
3.因式分解xy+6-2x-3y=(x-3)(y-2)
4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2
5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)
6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)
7.若已知x3+3x2-4含有x-1的因式,試分解x3+3x2-4=(x-1)(x+2)^2
8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)
9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)
10.因式分解a2-a-b2-b=(a+b)(a-b-1)
11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2
12.因式分解(a+3)2-6(a+3)=(a+3)(a-3)
13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)
14.16x2-81=(4x+9)(4x-9)
15.9x2-30x+25=(3x-5)^2
16.x2-7x-30=(x-10)(x+3)
17.3ax2-6ax=3ax(x-2)
18.x(x+2)-x=x(x+1)
19.x2-4x-ax+4a=(x-4)(x-a)
20.25x2-49=(5x-9)(5x+9)
21.36x2-60x+25=(6x-5)^2
22.4x2+12x+9=(2x+3)^2
23.x2-9x+18=(x-3)(x-6)
24.2x2-5x-3=(x-3)(2x+1)
25.12x2-50x+8=2(6x-1)(x-4)
26.3x2-6x=3x(x-2)
27.49x2-25=(7x+5)(7x-5)
28.6x2-13x+5=(2x-1)(3x-5)
29.x2+2-3x=(x-1)(x-2)
30.12x2-23x-24=(3x-8)(4x+3)
31.(x+6)(x-6)-(x-6)=(x-6)(x+5)
32.3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)
33.9x2+42x+49=(3x+7)^2 。
34..因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)
35.因式分解x2-25=(x+5)(x-5)
36.因式分解x2-20x+100=(x-10)^2
37.因式分解x2+4x+3=(x+1)(x+3)
38.因式分解4x2-12x+5=(2x-1)(2x-5)
39.因式分解下列各式:
40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)
41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)
42.因式分解9x2-66x+121=(3x-11)^2
43.因式分解8-2x2=2(2+x)(2-x)
44.因式分解x2-x+14 =整數內無法分解
45.因式分解9x2-30x+25=(3x-5)^2
46.因式分解-20x2+9x+20=(-4x+5)(5x+4)
47.因式分解12x2-29x+15=(4x-3)(3x-5)
48.因式分解36x2+39x+9=3(3x+1)(4x+3)
49.因式分解21x2-31x-22=(21x+11)(x-2)
50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)
51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)
52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)
53.因式分解x(y+2)-x-y-1=(x-1)(y+1)
54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)
55.因式分解9x2-66x+121=(3x-11)^2
56.因式分解8-2x2=2(2-x)(2+x)
57.因式分解x4-1=(x-1)(x+1)(x^2+1)
58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)
59.因式分解4x2-12x+5=(2x-1)(2x-5)
60.因式分解21x2-31x-22=(21x+11)(x-2)
5. 初一的因式分解怎麼解
1.分解因式(1+y)-2x(1+y)+x(1-y) 解:原式=(1+y)+2(1+y)+x(1-y)+x(1-y)-2(1+y)x(1-y)-2x(1+y) =[(1+y)+x(1-y)]-2(1+y)x(1-y)-2x(1+y) =[(1+y)+x(1-y)]-(2x) =[(1+y)+x(1-y)+2x]·[(1+y)+x(1-y)-2x] =(x-xy+2x+y+1)(x-xy-2x+y+1) =[(x+1)-y(x-1)][(x-1)-y(x-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.證明:對於任何數x,y,下式的值都不會為33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 就是把簡單的問題復雜化) 注意三原則 1 分解要徹底 2 最後結果只有小括弧 3 最後結果中多項式首項系數為正(例如:-3x^2+x=x(-3x+1)) 歸納方法:北師大版八下課本上有的 1、提公因式法。 2、公式法。 3、分組分解法。 4、湊數法。[x^2+(a+b)x+ab=(x+a)(x+b)] 5、組合分解法。 6、十字相乘法。 7、雙十字相乘法。 8、配方法。 9、拆項法。 10、換元法。 11、長除法。 12、加減項法。 13、求根法。 14、圖象法。 15、主元法。 16、待定系數法。 17、特殊值法。 18、因式定理法。
編輯本段基本方法
提公因式法
各項都含有的公共的因式叫做這個多項式各項的公因式。 如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。 具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的;取相同的多項式,多項式的次數取最低的。當各項的系數有分數時,公因式系數的分母為各分數分母的最小公倍數,分子為各分數分子的最大公約數(最大公因數) 如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數成為正數。提出「-」號時,多項式的各項都要變號。 口訣:找准公因式,一次要提凈;全家都搬走,留1把家守;提負要變號,變形看奇偶。 例如:-am+bm+cm=-(a-b-c)m; a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。 注意:把2a+1/2變成2(a+1/4)不叫提公因式
公式法
如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。 平方差公式: (a+b)(a-b)=a^2-b^2 反過來為a^2-b^2=(a+b)(a-b) 完全平方公式:(a+b)^2=a^2+2ab+b^2 反過來為a^2+2ab+b^2=(a+b)^2 (a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2 注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍。 兩根式:ax^2+bx+c=a(x-(-b+√(b^2-4ac))/2a)(x-(-b-√(b^2-4ac))/2a) 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2); 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2); 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3. 公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) 例如:a^2+4ab+4b^2 =(a+2b)^2。
分解因式技巧
1。 2.分解因式技巧掌握: ①等式左邊必須是多項式; ②分解因式的結果必須是以乘積的形式表示; ③每個因式必須是整式,且每個因式的次數都必須低於原來多項式的次數; ④分解因式必須分解到每個多項式因式都不能再分解為止。 註:分解因式前先要找到公因式,在確定公因式前,應從系數和因式兩個方面考慮。 3.提公因式法基本步驟: (1)找出公因式; (2)提公因式並確定另一個因式: ①第一步找公因式可按照確定公因式的方法先確定系數再確定字母; ②第二步提公因式並確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式後剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式; ③提完公因式後,另一因式的項數與原多項式的項數相同。
編輯本段競賽用到的方法
分組分解法
分組分解是解方程的一種簡潔的方法,我們來學習這個知識。 能分組分解的方程有四項或大於四項,一般的分組分解有兩種形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我們把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配,立即解除了困難。 同樣,這道題也可以這樣做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 幾道例題: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 說明:系數不一樣一樣可以做分組分解,和上面一樣,把5ax和5bx看成整體,把3ay和3by看成一個整體,利用乘法分配律輕松解出。 2. x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x^2+1) 利用二二分法,提公因式法提出 x2,然後相合輕松解決。 3. x^2-x-y^2-y 解法:=(x^2-y^2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a^2-b^2=(a+b)(a-b),然後相合解決。
十字相乘法
這種方法有兩種情況。 ①x^2+(p+q)x+pq型的式子的因式分解 這類二次三項式的特點是:二次項的系數是1;常數項是兩個數的積;一次項系數是常數項的兩個因數的和。因此,可以直接將某些二次項的系數是1的二次三項式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解 如果有k=ad,n=cb,且有ad+bc=m時,那麼kx^2+mx+n=(ax+c)(dx+b). 圖示如下: a╲╱c b╱╲d 例如:因為 1 ╲╱2 -3╱╲ 7 -3×7=-21,1×2=2,且2-21=-19, 所以7x2-19x-6=(7x+2)(x-3). 十字相乘法口訣:首尾分解,交叉相乘,求和湊中
拆項、添項法
這種方法指把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解。要注意,必須在與原多項式相等的原則下進行變形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).
配方法
對於某些不能利用公式法的多項式,可以將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解,這種方法叫配方法。屬於拆項、補項法的一種特殊情況。也要注意必須在與原多項式相等的原則下進行變形。 例如:x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5).
應用因式定理
對於多項式f(x)=0,如果f(a)=0,那麼f(x)必含有因式x-a. 例如:f(x)=x^2+5x+6,f(-2)=0,則可確定x+2是x^2+5x+6的一個因式。(事實上,x^2+5x+6=(x+2)(x+3).) 注意:1、對於系數全部是整數的多項式,若X=q/p(p,q為互質整數時)該多項式值為零,則q為常數項約數,p最高次項系數約數; 2、對於多項式f(a)=0,b為最高次項系數,c為常數項,則有a為c/b約數
換元法
有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來,這種方法叫做換元法。 相關公式
注意:換元後勿忘還元. 例如在分解(x2+x+1)(x2+x+2)-12時,可以令y=x^2+x,則 原式=(y+1)(y+2)-12 =y^2+3y+2-12=y^2+3y-10 =(y+5)(y-2) =(x^2+x+5)(x2+x-2) =(x^2+x+5)(x+2)(x-1). 也可以參看右圖。
求根法
令多項式f(x)=0,求出其根為x1,x2,x3,……xn,則該多項式可分解為f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) . 例如在分解2x^4+7x^3-2x^2-13x+6時,令2x^4 +7x^3-2x^2-13x+6=0, 則通過綜合除法可知,該方程的根為0.5 ,-3,-2,1. 所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).
圖象法
令y=f(x),做出函數y=f(x)的圖象,找到函數圖像與X軸的交點x1 ,x2 ,x3 ,……xn ,則多項式可因式分解為f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn). 與方法⑼相比,能避開解方程的繁瑣,但是不夠准確。 例如在分解x^3 +2x^2-5x-6時,可以令y=x^3; +2x^2 -5x-6. 作出其圖像,與x軸交點為-3,-1,2 則x^3+2x^2-5x-6=(x+1)(x+3)(x-2).
主元法
先選定一個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。
特殊值法
將2或10代入x,求出數p,將數p分解質因數,將質因數適當的組合,並將組合後的每一個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。 例如在分解x^3+9x^2+23x+15時,令x=2,則 x^3 +9x^2+23x+15=8+36+46+15=105, 將105分解成3個質因數的積,即105=3×5×7 . 注意到多項式中最高項的系數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值, 則x^3+9x^2+23x+15可能等於(x+1)(x+3)(x+5),驗證後的確如此。
待定系數法
首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。 例如在分解x^4-x^3-5x^2-6x-4時,由分析可知:這個多項式沒有一次因式,因而只能分解為兩個二次因式。 於是設x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d) 相關公式
=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd 由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4. 解得a=1,b=1,c=-2,d=-4. 則x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4). 也可以參看右圖。
雙十字相乘法
雙十字相乘法屬於因式分解的一類,類似於十字相乘法。 雙十字相乘法就是二元二次六項式,啟始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y為未知數,其餘都是常數 用一道例題來說明如何使用。 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:這是一個二次六項式,可考慮使用雙十字相乘法進行因式分解。 解:圖如下,把所有的數字交叉相連即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 雙十字相乘法其步驟為: ①先用十字相乘法分解2次項,如十字相乘圖①中x^2+5xy+6y^2=(x+2y)(x+3y); ②先依一個字母(如y)的一次系數分數常數項。如十字相乘圖②中6y²+18y+12=(2y+2)(3y+6); ③再按另一個字母(如x)的一次系數進行檢驗,如十字相乘圖③,這一步不能省,否則容易出錯。 利用根與系數的關系對二次多項式進行因式分解 例:對於二次多項式 aX^2+bX+c(a≠0) aX^2+bX+c=a[X^2+(b/a)X+(c/a)X]. 當△=b^2-4ac≥0時, =a(X^2-X1-X2+X1X2) =a(X-X1)(X-X2).
編輯本段多項式因式分解的一般步驟
①如果多項式的各項有公因式,那麼先提公因式; ②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解; ③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解; ④分解因式,必須進行到每一個多項式因式都不能再分解為止。 也可以用一句話來概括:「先看有無公因式,再看能否套公式。十字相乘試一試,分組分解要合適。」 幾道例題 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2. 解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(補項) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y). 2.求證:對於任何實數x,y,下式的值都不會為33: x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5. 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y). (分解因式的過程也可以參看右圖。) 當y=0時,原式=x^5不等於33;當y不等於0時,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四個以上不同因數的積,所以原命題成立。 3..△ABC的三邊a、b、c有如下關系式:-c^2+a^2+2ab-2bc=0,求證:這個三角形是等腰三角形。 分析:此題實質上是對關系式的等號左邊的多項式進行因式分解。 證明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三條邊, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC為等腰三角形。 4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。 解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1) =-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).
編輯本段四個注意
因式分解中的四個注意,可用四句話概括如下:首項有負常提負,各項有「公」先提「公」,某項提出莫漏1,括弧裡面分到「底」。 現舉下例 可供參考 例1 把-a2-b2+2ab+4分解因式。 解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 這里的「負」,指「負號」。如果多項式的第一項是負的,一般要提出負號,使括弧內第一項系數是正的。防止學生出現諸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的錯誤 例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1) 這里的「公」指「公因式」。如果多項式的各項含有公因式,那麼先提取這個公因式,再進一步分解因式;這里的「1」,是指多項式的某個整項是公因式時,先提出這個公因式後,括弧內切勿漏掉1。 分解因式,必須進行到每一個多項式因式都不能再分解為止。即分解到底,不能半途而廢的意思。其中包含提公因式要一次性提「干凈」,不留「尾巴」,並使每一個括弧內的多項式都不能再分解。防止學生出現諸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的錯誤。 考試時應注意: 在沒有說明化到實數時,一般只化到有理數就夠了,有說明實數的話,一般就要化到整數! 由此看來,因式分解中的四個注意貫穿於因式分解的四種基本方法之中,與因式分解的四個步驟或說一般思考順序的四句話:「先看有無公因式,再看能否套公式,十字相乘試一試,分組分解要合適」等是一脈相承的。
編輯本段應用
1、 應用於多項式除法。 2、 應用於高次方程的求根。 3、 應用於分式的通分與約分 順帶一提,梅森合數分解已經取得一些微不足道的進展: 1,p=4r+3,如果8r+7也是素數,則:(8r+7)|(2^P-1)。即(2p+1)|(2^P-1); .例如: 23|(2^11-1);;11=4×2+3; 47|(2^23-1);;23=4×5+3; 167|(2^83-1);,,,.83=4×20+3; 。。。。 2,,p=2^n×3^2+1,,則(6p+1)|(2^P-1), 例如:223|(2^37-1);;37=2×2×3×3+1; 439|(2^73-1);73=2×2×2×3×3+1; 3463|(2^577-1);;577=2×2×2×2×2×2×3×3+1; ,,,。 3,p=2^n×3^m×5^s-1,則(8p+1)|(2^P-1); .例如;233|(2^29-1);29=2×3×5-1; ;1433|(2^179-1);179=2×2×3×3×5-1; 1913|(2^239-1);239=2×2×2×2×3×5-1; ,,,。 還有一些梅森數分解取得進展,不再一一敘述
6. 因式分解法技巧
因式分解沒有普遍的方法,初中數學教材中主要介紹了提公因式法、公式法。而在競賽上,又有拆項和添減項法,分組分解法和十字相乘法,待定系數法,雙十字相乘法,對稱多項式輪換對稱多項式法,余式定理法,求根公式法,換元法,長除法,短除法,除法等。(實際上就是把見到的問題復雜化)
注意三原則
1 分解要徹底
2 最後結果只有小括弧
3 最後結果中多項式首項系數為正(例如:-3x²+x=x(-3x+1))
歸納方法:滬科版七下課本上有的
1、提公因式法。 2、公式法。 3、分組分解法。 4、湊數法。【x²+(a+b)x+ab=(x+a)(x+b)】 5、組合分解法。 8、十字相乘法。 9、雙十字相乘法。 10、配方法。 11、拆項法。 12、換元法。 13、長除法。 14、加減項法。 15、求根法。 16、圖象法。 17、主元法。 18、待定系數法。 19、特殊值法。 20、因式定理法。
基本方法
⑴提公因式法
各項都含有的公共的因式叫做這個多項式各項的公因式。
如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。
具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的;取相同的多項式,多項式的次數取最低的。
如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數成為正數。提出「-」號時,多項式的各項都要變號。
口訣:找准公因式,一次要提凈;全家都搬走,留1把家守;提負要變號,變形看奇偶。
例如:-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a+1/2變成2(a+1/4)不叫提公因式
⑵公式法
如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍。
兩根式:ax^2+bx+c=a(x-(-b+√(b^2-4ac))/2a)(x-(-b-√(b^2-4ac))/2a)
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)
例如:a ^2+4ab+4b^2 =(a+2b)^2。
(3)分解因式技巧
1.分解因式與整式乘法是互為逆變形。
2.分解因式技巧掌握:
①等式左邊必須是多項式;
②分解因式的結果必須是以乘積的形式表示;
③每個因式必須是整式,且每個因式的次數都必須低於原來多項式的次數;
④分解因式必須分解到每個多項式因式都不能再分解為止。
註:分解因式前先要找到公因式,在確定公因式前,應從系數和因式兩個方面考慮。
3.提公因式法基本步驟:
(1)找出公因式;
(2)提公因式並確定另一個因式:
①第一步找公因式可按照確定公因式的方法先確定系數在確定字母;
②第二步提公因式並確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式後剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式;
③提完公因式後,另一因式的項數與原多項式的項數相同。
⑶分組分解法
分組分解是解方程的一種簡潔的方法,我們來學習這個知識。
能分組分解的方程有四項或大於四項,一般的分組分解有兩種形式:二二分法,三一分法。
比如: ax+ay+bx+by =a(x+y)+b(x+y)=(a+b)(x+y)
我們把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配,立即解除了困難。
同樣,這道題也可以這樣做。
ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y)
幾道例題:
1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)
說明:系數不一樣一樣可以做分組分解,和上面一樣,把5ax和5bx看成整體,把3ay和3by看成一個整體,利用乘法分配律輕松解出。
2. x^3-x^2+x-1
解法:=(x^3-x^2)+(x-1)=x^2(x-1)+ (x-1)=(x-1)(x^2+1)
利用二二分法,提公因式法提出x2,然後相合輕松解決。
3. x2-x-y2-y 解法:=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然後相合解決。
⑷十字相乘法
這種方法有兩種情況。
①x^2+(p+q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的系數是1;常數項是兩個數的積;一次項系數是常數項的兩個因數的和。因此,可以直接將某些二次項的系數是1的二次三項式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果有k=ac,n=bd,且有ad+bc=m時,那麼kx^2+mx+n=(ax+b)(cx+d).
圖示如下: a b
c × d
例如:因為 1 -3
7 × 2
-3×7=-21,1×2=2,且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口訣:首尾分解,交叉相乘,求和湊中
⑸拆項、添項法
這種方法指把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解。要注意,必須在與原多項式相等的原則下進行變形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).
⑹配方法
對於某些不能利用公式法的多項式,可以將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解,這種方法叫配方法。屬於拆項、補項法的一種特殊情況。也要注意必須在與原多項式相等的原則下進行變形。
例如:x^2+3x-40=x^2+3x+2.25-42.25=(x+1.5)^2-(6.5)^2=(x+8)(x-5).
⑺應用因式定理
對於多項式f(x)=0,如果f(a)=0,那麼f(x)必含有因式x-a.
例如:f(x)=x^2+5x+6,f(-2)=0,則可確定x+2是x^2+5x+6的一個因式。(事實上,x^2+5x+6=(x+2)(x+3).)
注意:1、對於系數全部是整數的多項式,若X=q/p(p,q為互質整數時)該多項式值為零,則q為常數項約數,p最高次項系數約數;
2、對於多項式f(a)=0,b為最高次項系數,c為常數項,則有a為c/b約數
⑻換元法
有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來,這種方法叫做換元法。注意:換元後勿忘還元.
例如在分解(x^2+x+1)(x^2+x+2)-12時,可以令y=x^2+x,則
原式=(y+1)(y+2)-12
=y^2+3y+2-12=y^2+3y-10
=(y+5)(y-2)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1).
⑼求根法
令多項式f(x)=0,求出其根為x1,x2,x3,……xn,則該多項式可分解為f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2x^4+7x^3-2x^2-13x+6時,令2x^4 +7x^3-2x^2-13x+6=0,
則通過綜合除法可知,該方程的根為0.5 ,-3,-2,1.
所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).
⑽圖象法
令y=f(x),做出函數y=f(x)的圖象,找到函數圖像與X軸的交點x1 ,x2 ,x3 ,……xn ,則多項式可因式分解為f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).
與方法⑼相比,能避開解方程的繁瑣,但是不夠准確。
例如在分解x^3 +2x^2-5x-6時,可以令y=x^3; +2x^2 -5x-6.
作出其圖像,與x軸交點為-3,-1,2
則x^3+2x^2-5x-6=(x+1)(x+3)(x-2).
⑾主元法
先選定一個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。
⑿特殊值法
將2或10代入x,求出數p,將數p分解質因數,將質因數適當的組合,並將組合後的每一個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。
例如在分解x^3+9x^2+23x+15時,令x=2,
則 x^3 +9x^2+23x+15=8+36+46+15=105,
將105分解成3個質因數的積,即105=3×5×7 .
注意到多項式中最高項的系數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值,
則x^3+9x^2+23x+15可能等於(x+1)(x+3)(x+5),驗證後的確如此。
⒀待定系數法
首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
例如在分解x^4-x^3-5x^2-6x-4時,由分析可知:這個多項式沒有一次因式,因而只能分解為兩個二次因式。
於是設x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd
由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4.
解得a=1,b=1,c=-2,d=-4.
則x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).
⒁雙十字相乘法
雙十字相乘法屬於因式分解的一類,類似於十字相乘法。
雙十字相乘法就是二元二次六項式,啟始的式子如下: ax^2+bxy+cy^2+dx+ey+f
x、y為未知數,其餘都是常數
用一道例題來說明如何使用。
例:分解因式:x^2+5xy+6y^2+8x+18y+12.
分析:這是一個二次六項式,可考慮使用雙十字相乘法進行因式分解。 解:圖如下,把所有的數字交叉相連即可
x 2y 2 ① ② ③ x 3y 6
∴原式=(x+2y+2)(x+3y+6).
雙十字相乘法其步驟為:
①先用十字相乘法分解2次項,如十字相乘圖①中x^2+5xy+6y^2=(x+2y)(x+3y);
②先依一個字母(如y)的一次系數分數常數項。如十字相乘圖②中6y²+18y+12=(2y+2)(3y+6);
③再按另一個字母(如x)的一次系數進行檢驗,如十字相乘圖③,這一步不能省,否則容易出錯。
(15)利用根與系數的關系對二次多項式進行因式分解
例:對於二次多項式 aX^2+bX+c(a≠0)
aX^2+bX+c=a[X^2+(b/a)X+(c/a)X].
當△=b^2-4ac≥0時, =a(X^2-X1-X2+X1X2) =a(X-X1)(X-X2).
多項式因式分解的一般步驟:
①如果多項式的各項有公因式,那麼先提公因式;
②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;
③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解;
④分解因式,必須進行到每一個多項式因式都不能再分解為止。
也可以用一句話來概括:「先看有無公因式,再看能否套公式。十字相乘試一試,分組分解要合適。」
幾道例題
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.
解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(補項)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)
=[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求證:對於任何實數x,y,下式的值都不會為33:
x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.
解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
(分解因式的過程也可以參看右圖。)
當y=0時,原式=x^5不等於33;當y不等於0時,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四個以上不同因數的積,所以原命題成立。
3..△ABC的三邊a、b、c有如下關系式:-c^2+a^2+2ab-2bc=0,求證:這個三角形是等腰三角形。
分析:此題實質上是對關系式的等號左邊的多項式進行因式分解。
證明:∵-c^2+a^2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三條邊, ∴a+2b+c>0. ∴a-c=0,
即a=c,△ABC為等腰三角形。
4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。
解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)
=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).
因式分解四個注意:
因式分解中的四個注意,可用四句話概括如下:首項有負常提負,各項有「公」先提「公」,某項提出莫漏1,括弧裡面分到「底」。 現舉下例 可供參考
例1 把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 這里的「負」,指「負號」。如果多項式的第一項是負的,一般要提出負號,使括弧內第一項系數是正的。防止學生出現諸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的錯誤
例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)
這里的「公」指「公因式」。如果多項式的各項含有公因式,那麼先提取這個公因式,再進一步分解因式;這里的「1」,是指多項式的某個整項是公因式時,先提出這個公因式後,括弧內切勿漏掉1。
分解因式,必須進行到每一個多項式因式都不能再分解為止。即分解到底,不能半途而廢的意思。其中包含提公因式要一次性提「干凈」,不留「尾巴」,並使每一個括弧內的多項式都不能再分解。防止學生出現諸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的錯誤。
考試時應注意:
在沒有說明化到實數時,一般只化到有理數就夠了,有說明實數的話,一般就要化到整數!
由此看來,因式分解中的四個注意貫穿於因式分解的四種基本方法之中,與因式分解的四個步驟或說一般思考順序的四句話:「先看有無公因式,再看能否套公式,十字相乘試一試,分組分解要合適」等是一脈相承的。
7. 七年級下冊分因式分解 公式 是什麼
第一章:基本公式
①a^2-b^2=(a+b)(a-b)
②a^2±2ab+b^2=(a±b)^2
③a^3±b^3= (a±b)(a-(±ab)+b)
④a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
註:當a+b+c=0或a^2+b^2+c^2-ab-bc-ac=0時,a^3+b^3+c^3=3abc(3abc是因式分解的結果)
習題:
1、分解因式:a²+b²+c²+2ab+2bc+2ac
2、分解因式:a³-3a²b+3ab²-b³