Ⅰ 小數的簡便方法
小數的簡便運算,和整數基本一致。
可以活用交換律,結合律,分配律等等技巧,達到簡算的目的。
Ⅱ 如何才能讓孩子們掌握小數簡便計算的方法
解:可以用湊整法,觀察看看哪個數和哪個數之間通過相加或相減或相乘能湊成整數,其間可能要用到交換律、結合律、分配率,所以對這些運算定律一定要熟練,能靈活運用,這樣對掌握小數簡便計算就很有幫助了。
Ⅲ 小數的簡便運算方法
小數乘法:運用運算定律可以使一些計算簡便,小數乘法也可以運用整數乘法的運算定律使一些計算簡便運用定律計算,如果能設法使一個因數轉化為整百數或者兩個因數相乘的積為整百數就能使計算簡便。
小數除法:被除數和除數同時擴大相同的倍數,商不變。並指出需要特別注意被除數和除數要同時擴大,而且擴大的倍數相同。)
Ⅳ 小數簡便運算的技巧和方法
小數就要小數點對齊,然後用九九乘法表就可以做出來就行了,不難的,多做一點就好了呀,希望你能考個好成績。
Ⅳ 小數除法的簡便運算方法
小數除法簡便計算的基本方法,
1、運用被除數和除數同時擴大或縮小相同的倍數,商不變的規律進行簡便運算。
如:420÷35=(420÷7)÷(35÷7)=60÷5=12
2、利用添括弧湊整的方法進行簡便運算。
如:800÷125÷8=800÷(125×8)=800÷1000=0.8
小數由整數部分、小數部分和小數點組成。當測量物體時往往會得到的不是整數的數,古人就發明了小數來補充整數 小數是十進制分數的一種特殊表現形式。分母是10、100、1000……的分數可以用小數表示。所有分數都可以表示成小數,小數中除無限不循環小數外都可以表示成分數。無理數為無限不循環小數。
1、除數是整數的小數的除法
①先按照整數除法的法則去除;
②商的小數點要和被除數的小數點對齊;
③除到被除數的末尾仍有餘數時,就在余數後面添0,再繼續除。
2、除數是小數的小數除法
①先把除數的小數點去掉使它變成整數;
②看除數原來有幾位小數,就把被除數小數點向右移動相同的幾位(位數不夠時補0);
③按照除數是整數的除法進行計算。
一、被除數和商關系
1、被除數擴大(縮小)n倍,商也相應的擴大(縮小)n倍。
2、除數擴大(縮小)n倍,商相應的縮小(擴大)n倍)。
二、整數除法的運演算法則
1、從被除數的最高位起,取出和除數位數相同的數(如果取出的數小於除數,則要取出比除數多一位的數) ,用除數去除它,就得到商的最高位數和余數(余數可能為零) 。
2、把余數化為下一位的單位,加上被除數這-位上的數,再用除數去除它(除數小於該數時商為0),得到商和余數這樣繼續下去直到被除數上的數字全部用完,就得到最後的商和余數。
Ⅵ 小數簡便運算的技巧
小數的簡便運算先看,如果有兩個小數能湊整的,就先把兩個小數加起來,也就先加那兩個小數,比如說1.6和2.4加起來就等於4。這個的話數學課本上應該有的,你可以多去看一看數學課本。上課的時候也應該認真聽講。
Ⅶ 小數簡便計算方法總結
簡算是一種簡便、迅速的運算,根據算式的不同特點,利用數的組成和分解、各種運算定律、性質或它們之間的特殊關系,使計算過程簡單化,或直接得出結果。根據歸納,常見以下幾類題型:
(一)「湊整巧算」——運用加法的交換律、結合律進行計算。要求學生善於觀察題目,同時要有湊整意識。
【評注】湊整,特別是「湊十」、「湊百」、「湊千」等,是加減法速算的重要方法。
1、加法交換律
定義:兩個數交換位置和不變,
公式:A+B =B+A,
例如:6+18+4=6+4+18
2、加法結合律
定義:先把前兩個數相加,或者先把後兩個數相加,和不變。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
3、引申——湊整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
【評注】所謂的湊整,就是兩個或三個數結合相加,剛好湊成整十整百,譬如此題,「1.999」剛好 與「2」相差0.001,因此我們就可以先把它讀成「2」來進行計算。但是,一定要記住剛 才「多加的」要「減掉」。「多減的」要「加上」!
(二)運用乘法的交換律、結合律進行簡算。
1、乘法交換律
定義:兩個因數交換位置,積不變.
公式:A×B=B×A
例如:125×12×8=125×8×12
2、乘法結合律
定義:先乘前兩個因數,或者先乘後兩個因數,積不變。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
(三)運用減法的性質進行簡算,同時注意逆進行。
1、減法
定義:一個數連續減去兩個數,可以先把後兩個數相加,再相減。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的運用】
例如:20-8-2=20-(8+2)
(四)運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。
1、除法
定義:一個數連續除去兩個數 ,可以先把後兩個數相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定義:除數除以被除數,把被除數拆為兩個數字連除(這兩個數的積一定是這個被除數)
例如:64 ÷16=64÷8÷2=8÷2=4
(五)運用乘法分配律進行簡算
1、乘法分配律
定義:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。
公式:(A+B)×C=A×C+B×C
例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
【注意】:有些題目是運用分配律的逆運算來簡算:A×C+B×C=(A+B)×C:即提取公因數。
例如:75.3×99+75.3=75.3×(99+1)=75.3×100=7530
(六)混合運算(根據混合運算的法則)
註:數字搭檔( 0.5和2、0.25和4、0.125和8)
總的說來,簡便運算的思路是:(1)運用運算的性質、定律等。
(2)可能打亂常規的計算順序。
(3)拆數或轉化時,數的大小不能改變。
(4)正確處理好每一步的銜接。
(5)速算也是計算,是將硬算化為巧算。
(6)能提高計算的速度及能力,並能培養嚴謹細致、靈活巧妙的工作習慣。
Ⅷ 小數口算的簡便方法
先把小數變整數,算出來之後再看有每個數字的小數點後面有幾個數一個數就向左移一位,把那些小數點加起來,最後看有幾位就在整數結果的數字上向左移幾位
Ⅸ 小數點簡便運算的技巧和方法
加減法小數點對齊然後加減。乘法接整數乘法,共幾位小數,積的小數點就向左移動幾位。除法中除數有幾位小數,被除數的小數點向右移動幾位,商的小數點與被除的小數點對齊。
Ⅹ 如何快速的學會簡便計算
簡便運算實質就是對三大定律及基本性質的運用,三大定律就是我們熟知的交換律、結合律和分配率。對於培養小學高年級學生的計算能力、學生具有簡便運算的意識,及審題習慣,學會正確利用數的特徵的方法進行簡算,並逐步提高這方面的能力,切實提高簡算的水平,特別對提高學生計算的准確性、靈活性、創造性都有著舉足輕重的作用,也是小學數學課堂教學的一個重要目標,怎樣才能讓小學中高年級的學生更准確的掌握呢?我認為主要有以下的幾種類型可以使一些計算更簡便。這幾種類型無論對整數、小數還是分數的簡算都適用。
一、 運用交換律使一些計算更簡便
交換律文字表達式為:a + b = b + a或a ×b = b × a。在怎樣的情況下我們運用交換律呢?由上式不難發現有兩個或兩個以上的數連加或連乘的情況下運用交換律。例如:0.7+3.9+4.3+6.1;25×36×4這類型的題中。那怎樣進行交換呢?也就是說把誰和誰交換,這是解題的關鍵。先在這里介紹一種叫做「湊整」的數學思想,看那兩個數放在一塊恰好湊成整十整百或整千的數。那麼怎樣湊更簡單呢?就是把一個數與另一個數的最後一位相加或相乘看恰好是否湊成整十整百或整千的數,就把這兩個數交換放到一塊,會達到事半功倍的的效果,會使一些計算更簡便。
二、 運用結合率使一些計算更簡便
結合律的文字表達式:(a + b)+ c = a +( b + c )或a × ( b × c) = ( a × b ) × c。由表達式不難發現結合律就是3個或3個以上的數相加或相乘時運用結合律使一些計算更簡便。它和交換律的思想相似,那麼「湊整」的數學思想對它同樣適用,就是看相鄰的那兩個數的最後兩個數字相加或相乘恰好是整十整百或整千的數,我們就把這兩個數用括弧括起來,然後再計算。
三、運用分配率使一些計算更簡便
分配率就是乘法對加法的分配,文字表達式:a × ( b + c ) = a × b + a × c。通過表達式不難發現在分配的過程中要給括弧里的兩個數同時分配,這是解這類題的關鍵,也是大多數同學易出錯的一個誤區。這類題主要有兩類,實質後一類也是前一類的還原或劃歸。
第一類,a × ( b + c ),有表達式不難發現a與b或a與c相乘再加比b與c先加再與a相乘更簡便,在計算過程中要始終記清楚給兩個數同時分配。
第二類,a × b + a × c。實質就是第一類a× ( b + c )的還原或倒過來寫等式同樣成立。通過表達式不難發現該類題型當中有一個共同的數a,在計算時可以把這個共同的數a提到括弧的外邊,括弧里是另兩個數的「和」或「差」根據題意來寫。
四、 其它特殊類及基本性質的簡算
第一、整數與整數相乘。
例如37×101,這類型的題我們做時看那個數更接近整十整百或整千等,根據題意把這個整十整百或整千的數寫成整十整百或整千加多少(減多少),並把他們用括弧括起來,再與另一個整數相乘更簡便。
第二、整數和分數相乘。
例如:33×,整數與分數相乘計算時為了約分簡便或便於約分,將整數寫成分數的分母加上或減去一個數恰好和整數相等,再用括弧括起來計算會更簡便。
第三、減法性質。
文字表達式:a-b-c,這也是一類典型的簡算題,簡算時直接寫成 a-( b + c ),反過來也成立,即a - ( b + c )= a – b - c也成立
第四、除法性質。
文字表達式:a÷b÷c,簡算時直接寫成a÷(b×c),反過來同樣也成立,a÷(b×c) =a÷b÷c這也是一類非常典型的簡算題。
五、觀察題目特徵,選擇合適的簡算方法
對於小學生而言,掌握某種具體的簡算方法並不困難,經常出現的問題在於不能細心讀題、審題,關鍵要准確抓住題目特徵,繼而選擇合理的簡算方法,因此,要培養學生細心觀察、認真審題的習慣。要求學生做到:一看、二想、三做、四查。要求學生在讀題時,一要看清內容:題里有哪幾個數,它們之間存在哪幾種運算關系;二要想一想,能不能簡算?怎樣簡算?應用什麼定律或運算性質進行簡算?三做在明確目的方法後動筆細心計算;四查做好後認真檢查,可以預防錯誤,還可以使簡算方法更合理。