導航:首頁 > 方法技巧 > 趣速算的方法與技巧

趣速算的方法與技巧

發布時間:2022-06-22 21:21:26

⑴ 求 數學速算方法與技巧!

一、一種做多位乘法不用豎式的方法。我們都可以口算1X1
10X1,但是,11X12
12X13
12X14呢?
這時候,大家一般都會用豎式,通過豎式計算,得數是132、156、168。其中有趣的規律:積個位上的
數字正好是兩個因數個位數字的積。十位上的數字是兩個數字個位上的和。百位上的數字是兩個因數十
位數字的積。例如:
12X14=168
1=1X1
6=2+4
8=2X4
如果有進位怎麼辦呢?這個定律對有進位的情況同樣適用,在豎式時只要~滿幾時,就向下一位進幾。
~例如:
14X16=224
4=4X6的個位
2=2+4+6
2=1+1X1
試著做做看下面的題:
12X15=
11X13=
15X18=
17X19=
二、幾十一乘以幾十一的速算方法
例如:
21×61=
41×91=
41×91=
51×61=
81×91=
41×51=
41×81=
71×81=
這些算式有什麼特點呢?是「幾十一乘以幾十一」的乘法算式,我們可以用:先寫十位積,再寫十位
和(和滿10
進1),後寫個位積。「先寫十位積,再寫十位和(和滿10
進1),後寫個位積」就是一見到
幾十一乘以幾十一的乘法算式,如果十位數的和是一位數,我們先直接寫十位數的積,再接著寫十位數的
和,最後寫上1
就一定正確;如果十位數的和是兩位數,我們先直接寫十位數的積加1
的和,再接著寫十
位數的和的個位數,最後寫一個1
就一定正確。
我們來看兩個算式:
21×61=
41×91=
用「先寫十位積,再寫十位和(和滿10
進1),後寫個位積」這種速算方法直接寫得數時的思維過程。
第一個算式,21×61=?思維過程是:2×6=12,2+6=8,
21×61
就等於1281。
第二個算式,41×91=?思維過程是:4×9=36,4+9=13,36+1=37,
41×91
就等於3731。

⑵ 兩位數速算方法與技巧

操作方法
01
首先兩位數和兩位數相乘,第一個數加上第二個數的個位數,相加的數字寫在等號前面,例如13×15=,先在等號下寫18,分別作為百位和十位,即180,作為草稿。

02
其次,就把兩個兩位數的個位數相乘,得到的兩位數作為十位數和個位數,十位上的數字兩次相加,就可以得到正確答案,例如15×13=,5×3得15,15+180得到195。

03
然後,個位數相乘得一位數就簡單一些,例如11×13=,即140+3=143,這樣出錯的概率少一些,也便於口算。

04
還有一種辦法,就是湊整減零,例如11×14=,可以先算10×14得140,再加上1×14得14,兩個相加得154

⑶ 口算速算的方法

1.速算之湊整先算。
【點撥】:加法、減法的簡便計算中,基本思路是「湊整」,根據加法(乘法)的交換律、結合律以及減法的性質,其中若有能夠湊整的,可以變更算式,使能湊整的數結成一對好朋友,進行湊整計算,能使計算簡便。

例:298+304+196+502

【分析】:本題可以運用加法交換律和結合律,把能夠湊成整十、整百、整千……的數先加起來,可以使計算簡便。

【解答】:原式=(298+502)+(304+196)=800+500=1300

2.速算之帶符號搬家。
【點撥】:在加減混合,乘除混合同級運算中,可以根據運算的需要以及題目的特點,交換數字的位置,可以使計算變得簡便。特別提醒的是:交換數字的位置,要注意運算符號也隨之換位置。

例:464-545+836-455

【分析】:觀察例題我們會發現,如果按照慣例應該從左往右計算,464減545根本就不夠減,在小學階段,學生沒辦法做,所以要想做這道題,學生必須先觀察數字特點,進行簡便計算。

思考:4.75÷0.25-4.75能帶符號搬家嗎?什麼情況下才能帶符號搬家?帶符號搬家需要注意什麼?

3.速算之拆數湊整。
【點撥】:根據運算定律和數字特點,常常靈活地把算式中的數拆分,重新組合,分別湊成整十、整百、整千。

例:998+1413+9989

【分析】:給998添上2能湊成1000,給9989添上11湊成10000,所以就把1413分成1400、2與11三個數的和。

【解答】:
原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400

例:73.15×9.9

【分析】:把9.9看作10減0.1的差,然後用乘法分配率可簡化運算。

【解答】:
原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185

4.速算之等值變化。
【點撥】:等值變化是小學數學中重要的思想方法。做加法時候,常常利用這樣的恆等變形:一個加數增加,另一個加數就要減少同一個數,它們的和才不變。而減法中,是被減數和減數同時增加或減少相同的數,差才不變。
例:1234-798

【分析】:把798看作800,減去800後,再在所得差里加上多減去的2.

【解答】:原式==1234-800+2=436。

5.速算之去括弧法。
【點撥】:在加減混合運算中,括弧前面是「加號或乘號」,則去括弧時,括弧里的運算符號不變;如果括弧前面是「減號或除號」,則去括弧時,括弧里的運算符號都要改變。

例題:(4.8×7.5×8.1)÷(2.4×2.5×2.7)

【分析】:首先根據「去括弧原則」把括弧去掉,然後根據「在同級運算中每個數可帶著它前邊的符號『搬家』」進行簡算。

【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7
=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)
=2×3×3
=18

6.速算之同尾先減。
【點撥】:在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。

【分析】:算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256

7.速算之提取公因數
【點撥】:乘法分配率的反應用,出錯率比較高,一般包括三種類型。

⑷ 小學數學加減法速算方法與技巧

小學學生的加減法運算能力是非常重要的數學能力,運算能力不僅包括理解運算算理,掌握運算方法,還包括在遇到問題時能夠找到合理簡便的運算途徑。
速算不僅能簡化計算過程,化繁為簡,化難為易,同時又會提高計算效率。
因此在學習過程中,不僅需要掌握計演算法則,還需要學會一些運算技巧。

湊整"先計算
在進行加法運算時,若能對算式的各項恰當地分組,會使計算過程大大簡化。兩個數相加,若能恰好湊成整十、整百、整千、整萬…則先計算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"補數";79叫21的"補數",44也叫56的"補數",也就是說兩個數互為"補數"。
例題1.計算53+55+47
解:原式=(53+47)+55
=155
計算23+39+61
解:原式=23+(39+61)
=23+100
=123
對於不能直接湊整的,可以把其中一個數進行拆分,再湊整。
例題2.計算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
計算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
計算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
對於沒有直接湊整的數的,可以先湊整,最後再減去湊整的數。
例題3.計算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差數列
計算等差連續數(等差數列)的和相鄰的兩個數的差都相等的一串數就叫等差連續數,又叫等差數列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差連續數
1、等差連續數的個數是奇數時,它們的和等於中間數乘以個數。
例題4.計算1+2+3+4+5+6+7+8+9
解:原式=5×9(中間數是5,共9個數)
=45
計算1+3+5+7+9+11+13
解:原式=7×7(中間數是7,共7個數)
=49
計算2+4+6+8+10
解:原式=6×5(中間數是6,共5個數)
=30
2、等差連續數的個數是偶數時,它們的和等於首數與末數之和乘以個數的一半。
例題5.計算1+2+3+4+5+6+7+8+9+10
共10個數,個數的一半是5,首數是1,末數是10。
解:原式=(1+10)×5
=11×5
=55
計算1+3+5+7+9+11+13+15
共8個數,個數的一半是4,首數是1,末數是15。
解:原式=(1+15)×4
=16×4
=64
計算2+4+6+8+10+12
共6個數,個數的一半是3,首數是2,末數是12。
解:原式=(2+12)×3
=14×3
=42
基準數法
先觀察各個加數的大小接近什麼數字,再把每個加數先按接近的數字相加,然後再把少算的加上,把多算的減去。
例題6.計算23+22+24+18+19+17
通過觀察發現所有的加項比較接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
計算103+102+101+99+98
所有加項比較接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
減法中的巧算
1、把幾個互為"補數"的減數先加起來,再從被減數中減去。
例題7.計算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
計算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先減去那些與被減數有相同尾數的減數。
例題8.計算4622-(622+149)
解:原式=4000-149
=3851
3、利用"補數"先湊整,再運算(注意把多加的數再減去,把多減的數再加上)。
例題9.計算505-397
解:原式=500+5-400+3(把多減的 3再加上)
=108
計算523-289
解:原式=523-300+11(把多減的11再加上)
=223+11
=234
計算358+997
解:原式=358+1000-3(把多加的3再減去)
=1355
加減混合式的運算
1、去括弧和添括弧的法則
在只有加減運算的算式里,如果括弧前面是"+"號,則不論去掉括弧或添上括弧,括弧裡面的運算符號都不變;如果括弧前面是"-"號,則不論去掉括弧或添上括弧,括弧裡面的運算符號都要改變,"+"變"-","-"變"+"。
例題10.計算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
計算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、帶符號"搬家"
例題11.計算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每個數前面的運算符號是這個數的符號,如+47,-145,+53。而545前面雖然沒有符號,應看作是+545。
3、兩個數相同而符號相反的數可以直接"抵消"掉
例題12.計算18+2-18+4
解:原式=18-18+2+4
=6

⑸ 速算的方法與技巧

全腦速算
全腦速算是模擬電腦運算程序而研發的快速腦算技術教程,它能使兒童快速學會腦算任意數加、減、乘、除、乘方及驗算。從而快速提高孩子的運算速度和准確率。
全腦速算的運算原理:
通過雙手的活動來刺激大腦,讓大腦對數字直接產生敏感的條件反射作用,達到快速計算的目的。
(1)以手作為運算器並產生直觀的運算過程。
(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。
例如:6752 + 1629 = ?
運算過程和方法: 首位6+1是7,看後位(7+6)滿10,進位進1,首位7+1寫8,百位7減去6的補數4寫3,(後位因5+2不滿10,本位不進位),十位5+2是7,看後位(2+9)滿10進1,本位7+1寫8,個位2減去9的補數1寫1,所以本題結果為8381。
全腦速算乘法運算部分原理:
假設A、B、C、D為待定數字,則任意兩個因數的積都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比較適用於C能整除A×D的乘法,特別適用於兩個因數的「首數」是整數倍,或者兩個因數中有一個因數的「尾數」是「首數」的整數倍。
兩個因數的積,只要兩個因數的首數是整數倍關系,都可以運用此方法法進行運算,
即A =nC時,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
加法速算
計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣 ——「本位相加(針對進位數) 減加補,前位相加多加一 」就可以徹底解決任意位數從高位數到低位數的加法速算問題。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
減法速算
計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣 ——「本位相減(針對借位數) 加減補,前位相減多減一 」就可以徹底解決任意位數從高位數到低位數的減法速算問題。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數×10。
速算嬗數|=(a-c)×d+(b+d-10)×c,,
速算嬗數‖=(a+b-10)×c+(d-c)×a,
速算嬗數Ⅲ=a×d-『b』(補數)×c 。 更是獨秀一枝,無以倫比。
(1),用第一種速算嬗數=(a-c)×d+(b+d-10)×c,適用於首同尾任意的任意二位數乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗數一目瞭然分別等於「8」,「20 」和「8」即可。
(2), 用第二種速算嬗數=(a+b-10)×c+(d-c)×a適用於一因數的二位數之和接近等於「10」,另一因數的二位數之差接近等於「0」的任意二位數乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗數也同樣可以一目瞭然分別等於「2」,「5 」和「0」即可。
(3), 用第三種速算嬗數=a×d-『b』(補數)×c 適用於任意二位數的乘法速算。

⑹ 速算的技巧與方法

速算方法與技巧
速算的技巧和方法一、10-20的兩位數乘法及乘方速算方法:尾數相乘,被乘數加上乘數的尾數(滿十進位)【例1】12X13---------156(1)尾數相乘2X

⑺ 速算方法與技巧

頭相同,尾互補的兩位數相乘。頭互補,尾相同的兩位數相乘,任何兩位實數相乘。

十位數相同,個位數相加等於10的兩位數相乘。表達式為ab*a(10-b),這里ab分別代表了十位數字和個位數字。結果為千位百位是數字a*(a+1),十位個位數字是b*(10-b),列如37*33=1221。

個位數為5的平方的演算法,表達式為a5*a5,a代表5之前的數字,結果為十位個位為25,前面數字為a*(a+1)的積,比如說55*55=3025。

(7)趣速算的方法與技巧擴展閱讀:

用戶速算注意事項:

要多做題目訓練,俗話說熟能生巧,題目做的多了,做題時遇到類似可以用速算計算的大腦就會快速搜索到對應的口訣。

記口訣也是有技巧的,要分類記憶,找共同點。不能像我們記乘法口訣那樣,只需死死地記住就行,不需要理解,但像各種圖形的面積、體積、周長公式就不是死記能解決的,要理解記憶,這樣記的才能牢固。

閱讀全文

與趣速算的方法與技巧相關的資料

熱點內容
雙面羊絨的邊如何縫制方法視頻 瀏覽:752
腦血管堵塞手腳無力用什麼方法治 瀏覽:532
貴州學習方法哪裡學 瀏覽:406
變壓器串連接方法 瀏覽:398
愛衛唾液試紙使用方法 瀏覽:621
魚鉤魚線魚竿的連接方法 瀏覽:242
一建各科內各種計算方法編制方法 瀏覽:574
葛藤蔓的種植方法 瀏覽:502
小米平板的照片在哪裡設置方法 瀏覽:689
毛囊增生怎麼治療方法 瀏覽:564
99999999用簡便方法計算 瀏覽:328
蔚來汽車倒車剎車異響解決方法 瀏覽:175
蝗蟲飛機的製作方法簡單 瀏覽:948
預防治療近視的方法 瀏覽:59
瓷磚下面潮濕用什麼方法快速干 瀏覽:86
腦部淋巴瘤治療方法 瀏覽:841
增加現金流凈額的方法有哪些 瀏覽:629
釣魚主線和竿的連接方法 瀏覽:365
蘭花茶的功效與作用及食用方法 瀏覽:590
綠蘿快速長瀑布方法 瀏覽:136