❶ 高考數學大題的解題技巧都有哪些
一、三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤。一著不慎,滿盤皆輸。)。
二、數列題
1、證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2、最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
三、立體幾何題
1、證明線面位置關系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。更多相關知識也可關注下北京新東方的高中數學課程。
❷ 高考數學十分重要,有什麼方法和技巧
我覺得這個問題放大化來說就是高中學習的意義,很少有人能夠堅定地說出來關於學習的意義,對於應試教育的高中生來說,很多東西都是被迫的,被迫學習,被迫高考,被迫背課文,被迫記公式!
首先這個問題就不太對,數學老師不是全部題都會。
我的高中是一所一本率60%多的二流重點,我的班是本年級最好的班,班主任是數學老師,特級教師,省級學科帶頭人,17年教齡。他本人除了備課以外還堅持每天刷題,閱題無數,解題能力算是很強了,市裡面每年舉辦的教師解題技能大賽他通常都能拿到前三。
就是這樣一名老師,自己向我們承認:「一般難度的高考卷,2小時內我沒有把握拿到滿分,甚至140都無法保證。」這還是高考題,高考題一般沒有偏難怪題,如果是模擬題,有時還會出現幾個小時無法完全解出一道壓軸題的情況(當然大體思路是有的,只是一些小細節無法處理好)。
❸ 高中數學經典解題技巧和方法
2019學魁`榜邱崇數學解題技巧(含終極秒殺選填)(16.6G超清視頻)
鏈接:
若資源有問題歡迎追問~
❹ 高考數學各類題的一般解答方法、步驟
高考數學各題型解題應對策略
各位同學,你們好:
隨著高考腳步的臨近,每名考生都希望發揮出自己應有的水平,避免不當失分,可高考能否取得好成績,首先取決於數學能力,同時也取決於非智力因素,如:臨場發揮等。經常能見到一些平時成績很好的學生由於臨場發揮較差,造成高考失敗。所以非智力因素對考試的影響,正越來越受到教育人士和學生家長的關注。下面,結合數學學科的特點談談高考應注意事項及應對策略,以便使同學們在緊張的考試中沉著應對,並決戰高考。
一、考前准備
1.調適心理,增強信心
(1)合理設置考試目標,創設寬松的應考氛圍,以平常心對待高考;
(2)合理安排飲食,提高睡眠質量;
(3)保持良好的備考狀態,不斷進行積極的心理暗示;
2.悉心准備,不紊不亂
(1)查找錯題,分析病因,對症下葯,這是重點工作。
(2)回歸課本,回歸基礎,回歸近年高考試題,把握通性通法。
(3)重視書寫表達的規范性和簡潔性,掌握各類常見題型的表達模式,避免「會而不對,對而不全」現象的出現。
(4)臨考前應做一定量的中、低檔題,以達到熟悉基本方法、典型問題的目的,一般不再做難題,要保持清醒的頭腦和良好的競技狀態。
3.入場臨戰,通覽全卷
經驗表明,這段時間是學生最緊張、心理易產生焦慮的階段。此時,可將注意力轉移到某次印象較深的、考得較好的數學模擬考試中,回憶老師的講評;或回憶一些有趣、滑稽的事;也可採用心理暗示:"我是久經沙場的老將了,沒什麼大不了的";當然了也可全身心放鬆、閉目、做深呼吸,這樣直到發卷。剛拿到試卷,一般心情比較緊張,不要匆忙作答,可先通覽全卷,盡量從卷面上獲取最多的信息,為實施正確的解題策略作鋪墊,一般可在五分鍾之內做完下面幾件事:
(1)填寫好全部考生信息,檢查試卷有無問題;
(2)調節情緒,盡快進入考試狀態,可解答那些一眼就能看得出結論的簡單選擇或填空題(一旦解出,信心倍增,情緒立即穩定);
(3)對於不能立即作答的題目,可一邊通覽,一邊粗略地分為A、B兩類:A類指題型比較熟悉、容易上手的題目;B類指題型比較陌生、自我感覺有困難的題目,做到心中有數。
二、高考數學題型特點和答題技巧
1.選擇題——「足夠重視,不擇手段」
題型特點:
(1)概念性強:試題的陳述和信息的傳遞,都是以數學的學科規定與習慣為依據。即使是一些信息題比如:等和數列,集合的差集,等差比數列,也應按課本對基本概念的理解程序進行剖析。
(2)量化突出:定量型的試題所佔的比重很大,但量型選擇題其實不是簡單或機械的計算問題,其中往往蘊含了對概念、原理、性質和法則的考查,與定量計算緊密地結合在一起----量化突出。
(3)充滿思辨性:選擇性考試的高考數學試題,只憑簡單計算或直觀感知便能正確作答的試題不多,為了正確作答,或多或少總是要求考生具備一定的觀察、分析和邏輯推斷能力。思辨性的要求充滿題目的字里行間。
(4)形數兼備:這個特色在高中數學中得到充分的顯露,其表現是幾何題中常常隱藏著代數問題,而代數題中往往又寓有幾何圖形的問題。因此,數形結合與形數分離的解題方法是高考數學選擇題的一種重要且有效的思想方法與解題方法。
(5)解法多樣化:選擇題由於它有備選項,給試題的解答提供了豐富的有用信息,有相當大的提示性,為解題活動展現了廣闊的天地,大大地增加了解答的途徑和方法。常常潛藏著極其巧妙的解法,有利於對考生思維深度的考查。
解題策略:
(1)注意審題。弄清題目求什麼,已知什麼,求、知有什麼關系,把題目搞清楚了再動手答題。
(2)答題順序不一定按題號進行。可先從自己熟悉的題目答起,從有把握的題目入手,使自己盡快進入到解題狀態,再解答陌生或不太熟悉的題目,這樣也許能超水平發揮。
(3)數學選擇題大約有70%的題目都是直接法,要注意對符號、概念、公式、定理及性質等的理解和使用,例如函數的性質、數列的性質就是常見題目。
(4)挖掘隱含條件,注意易錯易混點。
(5)方法多樣,不擇手段。小題要小做,注意巧解,善於使用數形結合、特值(含特殊值、特殊位置、特殊圖形)、排除、驗證、轉化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不要在一兩個小題上糾纏,如果確實沒有思路,也要堅定信心,「題可以不會,但是要做對」,即使是「蒙」也有25%的勝率。
(6)控制時間。一般不要超過40分鍾,最好是30分鍾左右完成選擇題,爭取又快又准,為後面的解答題留下充裕的時間,防止「超時失分」。
選擇題是標准化測試的一種主要命題形勢,在高考數學試卷中佔有重要的份量。不僅是由於它佔有60分,而且是選擇題做得好與壞直接影響我們的情緒;影響整份試卷答題的效果,應引起足夠的重視。
2.填空題——「,慎之又慎,直撲結果」
題型特點:
填空題和選擇題同屬客觀題,它們形態短小精悍,考查目標集中,答案簡短、明確、具體等,不過填空題首先備選項,因此,解答時既有不受誤導的好處,又有缺乏提示的不足。對考生獨立思考和求解,在能力要求上會高一些。長期以來,填空題的答對率一直低於選擇題的答對率,也許這就是一個重要的原因。其次,填空題的考查方法比較靈活,在對題目的閱讀理解上,較之選擇題有時會顯得較為費勁。當然並非常常如此,這將取決於命題者對試題的設計意圖。
解題策略:
由於填空題和選擇題有相似之處,所以有些解題策略是可以共用的,在此不再多講,只針對不同的特徵給幾條建議:
一是填空題絕大多數是計算型(尤其是推理計算型)和概念(或性質)判斷性的試題,應答時必須按規則進行切實的計算或合乎邏輯的推演和判斷;
二是作答的結果必須是數值准確,形式規范。例如集合形式的表示、函數表達式的完整等,結果稍有毛病便是零分;
三是《考試說明》中對解答填空題提出的要求是「正確、合理、迅速」,因此,解答的基本策略是:細——審題要細,不能粗心大意;穩——變形要穩,防止操之過急;快——運算要快,力戒小題大做;准——答案要准,避免對而不全;活——解題要活,不要生搬硬套;。
在填完答案之後,一定要檢查一遍答案的表述是否完全符合題意(如:填寫的結果是用不等式表達,還是應該用集合表達?在用區間表達形式時,是用開區間,還是閉區間或半開半閉區間?最後結果的分數形式是最簡分數嗎?直線表達式用的是一般方程嗎?等等)。
3.解答題——「步步為營,踩點搶分」
題型特點:
解答題屬於提供型的試題,一般情況前三道題比較基本,後三道題有一定的難度(綜合性強,經常在知識交匯點命題)或者比較新穎(題型新穎、思路新穎)。首先,解答題應答時,考生不僅要提供出最後的結論,還得寫出或說出解答過程的主要步驟,提供合理、合法的說明,其次,解答題試題內涵豐富,考點較多,綜合性強,難度較高,因而解答題命題的自由度較大。
評分辦法:
數學高考閱卷評分實行懂多少知識給多少分的評分辦法,叫做「分段評分」。而考生「分段得分」的基本策略是:會做的題目力求不失分,部分理解的題目力爭多得分。會做的題目若不注意准確表達和規范書寫,常常會被「分段扣分」,有閱卷經驗的老師告訴我們,解答立體幾何題時,用向量方法處理的往往扣分少。
解答題閱卷的評分原則一般是:第一問,錯或未做,而第二問對,則第二問得分全給;前面錯引起後面方法用對但結果出錯,則後面給一半分。
解題策略:
(1)常見失分因素:
①對題意缺乏正確的理解,應做到慢審題快做題;
②公式記憶不牢,考前一定要熟悉公式、定理、性質等;
③思維不嚴謹,不要忽視易錯點;
④解題步驟不規范,一定要按課本要求,否則會因不規范答題失分,避免「對而不全」如解概率題,要給出適當的文字說明,不能只列幾個式子或單純的結論,表達不規范、字跡不工整等非智力因素會影響閱卷老師的「感情分」;
⑤計算能力差失分多,會做的一定不能放過,不能一味求快,例如平面解析中的圓錐曲線問題就要求較強的運算能力;
⑥輕易放棄試題,難題不會做,可分解成小問題,分步解決,如最起碼能將文字語言翻譯成符號語言、設應用題未知數、設軌跡的動點坐標等,都能拿分。也許隨著這些小步驟的羅列,還能悟出解題的靈感。
(2)何為「分段得分」:
對於同一道題目,有的人理解的深,有的人理解的淺;有的人解決的多,有的人解決的少。為了區分這種情況,高考的閱卷評分辦法是懂多少知識就給多少分。這種方法我們叫它「分段評分」,或者「踩點給分」——踩上知識點就得分,踩得多就多得分。與之對應的「分段得分」的基本精神是,會做的題目力求不失分,部分理解的題目力爭多得分。
對絕大多數考生來說,更為重要的是如何從拿不下來的題目中分段得點分。我們說,有什麼樣的解題策略,就有什麼樣的得分策略。把你解題的真實過程原原本本寫出來,就是「分段得分」的全部秘密。
①缺步解答:如果遇到一個很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未成功不等於失敗。特別是那些解題層次明顯的題目,或者是已經程序化了的方法,每一步得分點的演算都可以得分,最後結論雖然未得出,但分數卻已過半,這叫「大題拿小分」。
②跳步答題:解題過程卡在某一過渡環節上是常見的。這時,我們可以先承認中間結論,往後推,看能否得到結論。如果不能,說明這個途徑不對,立即改變方向;如果能得出預期結論,就回過頭來,集中力量攻克這一「卡殼處」。由於考試時間的限制,「卡殼處」的攻克如果來不及了,就可以把前面的寫下來,再寫出「證實某步之後,繼續有……」一直做到底。也許,後來中間步驟又想出來,這時不要亂七八糟插上去,可補在後面。若題目有兩問,第一問想不出來,可把第一問作「已知」,先做第二問,這也是跳步解答。
③退步解答:「以退求進」是一個重要的解題策略。如果你不能解決所提出的問題,那麼,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從較強的結論退到較弱的結論。總之,退到一個你能夠解決的問題。為不產生「以偏概全」的誤解,應開門見山寫上「本題分幾種情況」。這樣,還會為尋找正確的、一般性的解法提供有意義的啟發。
④輔助解答:一道題目的完整解答,既有主要的實質性的步驟,也有次要的輔助性的步驟。實質性的步驟未找到之前,找輔助性的步驟是明智之舉。如:准確作圖,把題目中的條件翻譯成數學表達式,設應用題的未知數等。
答卷中要做到穩扎穩打,字字有據,步步准確,盡量一次成功,提高成功率。試題做完後要認真做好解後檢查,看是否有空題,答卷是否准確,所寫字母與題中圖形上的是否一致,格式是否規范,尤其是要審查字母、符號是否抄錯,在確信萬無一失後方可交卷。
(3)能力不同,要求有變:
由於考生的層次不同,面對同一張試卷,要盡可能發揮自己的水平,考試策略也有所不同。
①對基礎較差的考生而言要「以穩取勝」——這類考生除了知識方面的缺陷外,「會而不對,對而不全」是這類考生的致命傷。丟分的主要原因在於審題失誤和計算失誤。考試時要克服急躁心態,如果發現做不下去,就盡早放棄,把時間用於檢查已做的題,或回頭再做前面沒做的題。記住,只要把你會做的題都做對,你就是最成功的人!
②針對二本及部分一本的同學而言要「以准取勝」——他們基礎比較扎實,但也會犯低級錯誤,所以,考試時要做到准確無誤(指會做的題目),除了最後兩題的第三問不一定能做出,其他題目大都在「火力范圍」內。但前面可能遇到「攔路虎」,要敢於放棄,把會做的題做得准確無誤,再回來「打虎」。
③針對第一志願為名牌大學的考試而言要「以新取勝」——這些考生的主攻方向是能力型試題,在快速、正確做好常規試題的前提下,集中精力做好能力題。這些試題往往思考強度大,運算要求高,解題需要新的思想和方法,要靈活把握,見機行事。如果遇到不順手的試題,也不必恐慌,可能是試題較難,大家都一樣,此時,使會做的題不丟分就是上策。
總之:基礎題要拿足分,中檔題要少失分,難題要力爭多得分。
最後祝全體考生在高考中取得優異成績!
摘自bkhpf 的空間
❺ 數學高考答題技巧與答題方法是什麼
數學高考答題技巧與答題方法是如下:
1、函數或方程或不等式的題目,先直接思考後建立三者的聯系。首先考慮定義域,其次使用「三合一定理」。
2、如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法。
3、面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質。如所過的定點,二次函數的對稱軸或是。
4、選擇與填空中出現不等式的題目,優選特殊值法。
5、求參數的取值范圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法。
6、恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏。
7、圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式。
❻ 高考數學考試技巧和方法有哪些
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.
❼ 誰告訴我高考數學的答題技巧啊
高中數學是很多同學高考道路上的攔路虎,同學們想不想數學成績也提到130以上?想的話,今天就給大家分享一篇高中數學各題型解題方法,希望對同學們能有所幫助。
1.選擇題—「不擇手段」
(1) 注意審題。把題目多讀幾遍,弄清這個題目求什麼,已知什麼,求、知之間有什麼關系,把題目搞清楚了再動手答題。
(2) 答題順序不一定按題號進行。可先從自己熟悉的題目答起,從有把握的題目入手,使自己盡快進入到解題狀態,產生解題的激情和慾望,再解答陌生或不太熟悉的題目。若有時間,再去拼那些把握不大或無從下手的題。這樣也許能超水平發揮。
(3) 挖掘隱含條件,注意易錯易混點,例如集合中的空集、函數的定義域、應用性問題的限制條件等。
(4) 方法多樣,不擇手段。高考試題凸現能力,小題要小做,注意巧解,善於使用數形結合、特值(含特殊值、特殊位置、特殊圖形)、排除、驗證、轉化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不要在一兩個小題上糾纏,杜絕小題大做,如果確實沒有思路,也要堅定信心,「題可以不會,但是要做對」,即使是「蒙」也有25%的勝率。
(5) 控制時間。一般不要超過40分鍾,最好是25分鍾左右完成選擇題,爭取又快又准,為後面的解答題留下充裕的時間,防止「超時失分」。
2.填空題—「直撲結果」
填空題和選擇題有相似之處,有些解題策略是可以共用的,在此不再多講,只針對不同的特徵給幾條建議:
(1) 作答的結果必須是數值准確,形式規范,例如集合形式的表示、函數表達式的完整等,結果稍有毛病便是零分;
(2) 解答填空題要做到「正確、合理、迅速」。解答的基本策略是:快——運算要快,力戒小題大做;穩——變形要穩,防止操之過急;全——答案要全,避免對而不全;活——解題要活,不要生搬硬套;細——審題要細,不能粗心大意。
3.解答題—「步步為營」
數學高考閱卷評分實行懂多少知識給多少分的評分辦法,叫做「分段評分」。而考生「分段得分」的基本策略是:會做的題目力求不失分,部分理解的題目力爭多得分。會做的題目若不注意准確表達和規范書寫,常常會被「分段扣分」,有閱卷經驗的老師告訴我們,解答立體幾何題時,用向量方法處理的往往扣分少。
解答題閱卷的評分原則一般是:第一問,錯或未做,而第二問對,則第二問得分全給;前面錯引起後面方法用對但結果出錯,則後面給一半分。解題策略如下:
(1) 常見失分因素
①對題意缺乏正確的理解,應做到慢審題快做題;
②公式記憶不牢,考前一定要熟悉公式、定理、性質等;
③思維不嚴謹,不要忽視易錯點;
④解題步驟不規范,一定要按課本要求,否則會因不規范答題失分,避免「對而不全」如解概率題,要給出適當的文字說明,不能只列幾個式子或單純的結論;
⑤計算能力差失分多,會做的一定不能放過,不能一味求快,例如平面解析中的圓錐曲線問題就要求較強的運算能力;
⑥輕易放棄試題,難題不會做,可分解成小問題,分步解決,如最起碼能將文字語言翻譯成符號語言、設應用題未知數、設軌跡的動點坐標等,都能拿分。也許隨著這些小步驟的羅列,還能悟出解題的靈感。
(2) 何為「分段得分」
有什麼樣的解題策略,就有什麼樣的得分策略。把你解題的真實過程原原本本寫出來,就是「分段得分」的全部秘密。
①缺步解答:如果遇到一個很困難的問題,將它們分解為一系列的步驟,先解決問題的一部分,能解決多少就解決多少,尚未成功不等於失敗。特別是那些解題層次明顯的題目,或者是已經程序化了的方法,每一步得分點的演算都可以得分,最後結論雖然未得出,但分數卻已過半,這叫「大題拿小分」。
②跳步答題:解題過程卡在某一過渡環節上是常見的。這時,我們可以先承認中間結論,往後推,看能否得到結論。如果不能,說明這個途徑不對,立即改變方向;如果能得出預期結論,就回過頭來,集中力量攻克這一「卡殼處」。由於考試時間的限制,「卡殼處」的攻克如果來不及了,就可以把前面的寫下來,再寫出「證實某步之後,繼續有……」一直做到底。也許,後來中間步驟又想出來,這時不要亂七八糟插上去,可補在後面。若題目有兩問,第一問想不出來,可把第一問作「已知」,先做第二問,這也是跳步解答。
③輔助解答:一道題目實質性的步驟未找到之前,找輔助性的步驟是明智之舉。如:准確作圖,把題目中的條件翻譯成數學表達式,設應用題的未知數等。答卷中要做到穩扎穩打,字字有據,步步准確,盡量一次成功,提高成功率。試題做完後要認真做好解後檢查,看是否有空題,答卷是否准確,所寫字母與題中圖形上的是否一致,格式是否規范,尤其是要審查字母、符號是否抄錯,在確信萬無一失後方可交卷。
(3) 能力不同,要求有變
針對基礎較差、以二本為最高目標的考生而言要「以穩取勝」——這類考生除了知識方面的缺陷外,「會而不對,對而不全」是這類考生的致命傷。丟分的主要原因在於審題失誤和計算失誤。考試時要克服急躁心態,如果發現做不下去,就盡早放棄,把時間用於檢查已做的題,或回頭再做前面沒做的題。記住,只要把你會做的題都做對,你就是最成功的人!
針對二本及部分一本的同學而言要「以准取勝」——他們基礎比較扎實,但也會犯低級錯誤,所以,考試時要做到准確無誤(指會做的題目),除了最後兩題的第三問不一定能做出,其他題目大都在「火力范圍」內。但前面可能遇到「攔路虎」,要敢於放棄,把會做的題做得准確無誤,再回來「打虎」。
針對第一志願為名牌大學的考試而言要「以新取勝」——這些考生的主攻方向是能力型試題,在快速、正確做好常規試題的前提下,集中精力做好能力題。這些試題往往思考強度大,運算要求高,解題需要新的思想和方法,要靈活把握,見機行事。如果遇到不順手的試題,也不必恐慌,可能是試題較難,大家都一樣,此時,使會做的題不丟分就是上策。
❽ 高考數學題型與技巧有哪些
高中數學合集網路網盤下載
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
提取碼:1234
簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。