Ⅰ 有實驗組控制組的測試結果,欲檢驗其是否存在顯著差異,應選用哪些可用的方法
當試驗數據出現兩種或者多種不同的結果時,應該採用統計學的方法,通過顯著性檢驗來判斷試驗數據之間是否存在顯著性差異。
顯著性檢驗的方法通常有t檢驗法和F檢驗法:
t檢驗用來檢測兩組數據的准確度,確定是否存在系統誤差
F檢驗又叫方差齊性檢驗,用來檢測兩組或多組數據的精密度,確定是否存在偶然誤差
計算公式和查表之類的就不寫了,太復雜,而且你手上應該都有
針對你的數據,如果只是「需要看一下兩組差別是不是很大」,只用F檢驗即可
如果你需要確定數據是否存在系統誤差,或是否與假設結論是否相符時,則需要用到t檢驗
提醒一句,若要進行t檢驗,首先得進行F檢驗,用以判斷兩組數據的方差齊性
若兩組數據方差相等,則用t檢驗;若方差不等,則用變種的t'檢驗
總之,不論怎樣,都要用到F檢驗
Ⅱ 如何進行顯著性分析
利用SPSS進行統計檢驗
在教育技術研究中,經常需要利用不同的教學媒體或教學資源對不同的對象進行教學改革試驗,但教學試驗的總體往往都有較大數量,限於人力、物力與時間,通常都採用抽取一定的樣本作為研究對象,這樣,就存在樣本的特徵數量能否反映總體特徵的問題,也存在著兩種不同的樣本的數量標志的參數是否存在差異的問題,這就必需對樣本量數進行定量分析與推斷,在教育統計學中稱為「統計檢驗」。
一、統計檢驗的基本原理
統計檢驗是先對總體的分布規律作出某種假說,然後根據樣本提供的數據,通過統計運算,根據運算結果,對假說作出肯定或否定的決策。如果現要檢驗實驗組和對照組的平均數(μ1和μ2)有沒有差異,其步驟為:
1.建立虛無假設,即先認為兩者沒有差異,用表示;
2.通過統計運算,確定假設成立的概率P。
⒊ 根據P 的大小,判斷假設是否成立。如表6-12所示。
二、大樣本平均數差異的顯著性檢驗——Z檢驗
Z檢驗法適用於大樣本(樣本容量小於30)的兩平均數之間差異顯著性檢驗的方法。它是通過計算兩個平均數之間差的Z分數來與規定的理論Z值相比較,看是否大於規定的理論Z值,從而判定兩平均數的差異是否顯著的一種差異顯著性檢驗方法。其一般步驟:
第一步,建立虛無假設,即先假定兩個平均數之間沒有顯著差異。
第二步,計算統計量Z值,對於不同類型的問題選用不同的統計量計算方法。
(1)如果檢驗一個樣本平均數()與一個已知的總體平均數()的差異是否顯著。其Z值計算公式為:
其中是檢驗樣本的平均數;
是已知總體的平均數;
S是樣本的方差;
n是樣本容量。
(2)如果檢驗來自兩個的兩組樣本平均數的差異性,從而判斷它們各自代表的總體的差異是否顯著。其Z值計算公式為:
其中,1、2是樣本1,樣本2的平均數;
是樣本1,樣本2的標准差;
是樣本1,樣本2的容量。
第三步,比較計算所得Z值與理論Z值,推斷發生的概率,依據Z值與差異顯著性關系表作出判斷。如表6-13所示。
第四步,根據是以上分析,結合具體情況,作出結論。
【例6-5】某項教育技術實驗,對實驗組和控制組的前測和後測的數據分別如表6-14所示,比較兩組前測和後測是否存在差異。
由於n>30,屬於大樣本,應採用Z檢驗。由於這是檢驗來自兩個不同總體的兩個樣本平均數,看它們各自代表的總體的差異是否顯著,所以採用雙總體的Z檢驗方法。
計算前測Z的值
= -0.658
∵=0.658<1.96
∴ 前測兩組差異不顯著。
再計算後測Z的值
= 2.16
∵ = 2.16>1.96
∴ 後測兩組差異顯著。
三、小樣本平均差異的顯著性檢驗——t檢驗
t檢驗是用於小樣本(樣本容量小於30)時,兩個平均值差異程度的檢驗方法。它是用t分布理論來推斷差異發生的概率,從而判定兩個平均數的差異是否顯著。其一般步驟如下:
第一步,建立虛無假設,即先假定兩個總體平均數之間沒有顯著差異。
第二步,計算統計量t值,對於不同類型的問題選用不同的統計量計算方法。
(1)如果要評斷一個總體中的小樣本平均數與總體平均值之間的差異程度,其統計量t值的計算公式為:
(2)如果要評斷兩組樣本平均數之間的差異程度,其統計量t值的計算公式為:
第三步,根據自由度df= n-1,查t值表,找出規定的t理論值(見附錄)並進行比較。理論值差異的顯著水平為0.01級或0.05級。不同自由度的顯著水平理論值記為t (df)0.01和t (df)0.05
第四步,比較計算得到的t值和理論t值,推斷發生的概率,依據表6-15給出的t值與差異顯著性關系表作出判斷。
第五步,根據是以上分析,結合具體情況,作出結論
Ⅲ 變數的顯著性檢驗主要使用什麼方法
顯著性檢驗
就是事先對總體(
隨機變數
)的參數或
總體分布
形式做出一個假設,然後利用樣本信息來判斷這個假設(原假設)是否合理,即判斷總體的真實情況與原假設是否顯著地有差異。或者說,顯著性檢驗要判斷樣本與我們對總體所做的假設之間的差異是純屬機會變異,還是由我們所做的假設與總體真實情況之間不一致所引起的。
顯著性檢驗是針對我們對總體所做的假設做檢驗,其原理就是「
小概率事件
實際不可能性原理」來接受或否定假設。
抽樣實驗會產生
抽樣誤差
,對實驗資料進行比較分析時,不能僅憑兩個結果(平均數或率)的不同就作出結論,而是要進行統計學分析,鑒別出兩者差異是抽樣誤差引起的,還是由特定的
實驗處理
引起的。
顯著性檢驗即用於實驗處理組與
對照組
或兩種不同處理的效應之間是否有差異,以及這種差異是否顯著的方法。
常把一個要檢驗的假設記作H0,稱為原假設(或
零假設
)
(null
hypothesis
)
,與H0對立的假設記作H1,稱為備擇假設(
alternative
hypothesis)
。
⑴
在原假設為真時,
決定放棄
原假設,稱為
第一類錯誤
,其出現的概率通常記作α;
⑵
在原假設不真時,決定接受原假設,稱為
第二類錯誤
,其出現的概率通常記作β。
通常只限定犯第一類錯誤的最大概率α,
不考慮犯第二類錯誤的概率β。這樣的假設
檢驗又稱為顯著性檢驗,概率α稱為
顯著性水平
。
最常用的
α值
為0.01、0.05、0.10等。一般情況下,根據研究的問題,如果放棄真錯誤損失大,為減少這類錯誤,α取值小些
,反之,α取值大些。
Ⅳ 顯著性檢驗的常用檢驗
用於計數資料。是當實驗組或對照組中出現概率為0或100%時,X2檢驗的一種特殊形式。屬於直接概率計演算法。
非參數統計方法
符號檢驗、秩和檢驗和Ridit檢驗
三者均屬非參數統計方法,共同特點是簡便、快捷、實用。可用於各種非正態分布的資料、未知分布資料及半定量資料的分析。其主要缺點是容易丟失數據中包含的信息。所以凡是正態分布或可通過數據轉換成正態分布者盡量不用這些方法。
Hotelling檢驗
用於計量資料、正態分布、兩組間多項指標的綜合差異顯著性檢驗。
Ⅳ 顯著性檢驗最常見的有t檢驗法和什麼法
計算出統計量的值,這個統計量的選取要使得在假設H0成立時,作出拒絕或接受假設H0的判斷、t檢驗法。常用的假設檢驗方法有u—檢驗法;由實測的樣本假設檢驗(Hypothesis Testing)是數理統計學中根據一定假設條件由樣本推斷總體的一種方法,秩和檢驗等。具體作法是,其分布為已知、χ2檢驗法(卡方檢驗),記作H0:根據問題的需要對所研究的總體作某種假設,並根據預先給定的顯著性水平進行檢驗;選取合適的統計量、F—檢驗法
Ⅵ 顯著性檢驗的步驟
顯著性檢驗的一般步驟或格式,如下:
1、提出假設
H0:______
H1:______
同時,與備擇假設相應,指出所作檢驗為雙尾檢驗還是左單尾或右單尾檢驗。
2、構造檢驗統計量,收集樣本數據,計算檢驗統計量的樣本觀察值。
3、根據所提出的顯著水平 ,確定臨界值和拒絕域。
4、作出檢驗決策。
把檢驗統計量的樣本觀察值和臨界值比較,或者把觀察到的顯著水平與顯著水平標准比較;最後按檢驗規則作出檢驗決策。當樣本值落入拒絕域時,表述成:「拒絕原假設」,「顯著表明真實的差異存在」;當樣本值落入接受域時,表述成:「沒有充足的理由拒絕原假設」,「沒有充足的理由表明真實的差異存在」。另外,在表述結論之後應當註明所用的顯著水平。
Ⅶ 多元線性回歸的顯著性檢驗包含哪些內容如何進行
多元線性回歸的顯著性檢驗包含所有自變數與因變數。
回歸方程的顯著性檢驗,即檢驗整個回歸方程的顯著性,或者說評價所有自變數與因變數的線性關系是否密切。能常採用F檢驗,F統計量的計算公式為:
(7)如何進行實驗方法的顯著性檢驗擴展閱讀:
建立多元性回歸模型時,為了保證回歸模型具有優良的解釋能力和預測效果,應首先注意自變數的選擇,其准則是:
(1)自變數對因變數必須有顯著的影響,並呈密切的線性相關;
(2)自變數與因變數之間的線性相關必須是真實的,而不是形式上的;
(3)自變數之間應具有一定的互斥性,即自變數之間的相關程度不應高於自變數與因變數之因的相關程度;
(4)自變數應具有完整的統計數據,其預測值容易確定。
Ⅷ 如何進行excel顯著性檢驗
excel進行顯著性檢驗的方法與步驟:
1.先找ADD-IN,添加數據分析工具data analysis tool。 Add-in的選項在File-> Option->Add Ins, 選擇analysis tool pack。
2.會跳出來一個窗口,再選中analysis tookpack ,確定就好了。
3.把得到的兩組數據輸入EXCEL里。
4.在DATA裡面,選擇data analysis,跳出來新窗口,選中correlation(相關性)。然後按照提示,選中要分析的數據。
5.EXCEL會自動運行回歸分析,給出分析報告。分析報告里mutiple R 接近1,就說明兩個的相關性比較大。擬合關系要看R2,顯著性看signifnance F。