1. 計算題的方法技巧
1、從新課程標準的要求看,現在的計算題的計算量和計算難度都要求不高。
主要涉及這幾個公式:
密度公式:(ρ=m/V); 固體壓強公式:P=F/S;
功的公式:(W=Fs); 功率公式:(P=W/t=Fv);
機械效率公式:(η=W有用/W總); 熱量計算公式:(物體溫度變化吸、放熱:Q=cmΔt;燃料燃燒放熱:Q=qm);
歐姆定律公式:(I=U/R); 電功公式:(W=UIt);
電功率公式:(P=UI=W/t); 電熱公式:(Q=I2Rt),此外可能會用到阿基米德原理,即F浮=G排。
2、解答計算題的一般步驟:
(1)細心讀題審題 (2)尋找解題根據 (3)解答和檢驗
3、解計算題的一般要求:
(1)要明確已知條件和相對隱含條件,確定主要解題步驟。
(2)分析判斷,找到解題的理論依據。
(3)分清各個物理過程、狀態及其相互聯系。
(4)計算過程應正確、規范。要正確寫出有關的公式,正確代入公式中物理量的數字和單位。能畫圖的可以作圖輔佐解題。
4、解計算題應注意:
單位的統一性;物理量的同體性、同時性;解題的規范性。
5、計算題的主要類型:
1)有關密度、壓強、機械功、功率和效率的計算
此類試題一般圍繞「使用任何機械都不能省功」展開,同時考慮實際使用機械做功時要克服機械自重、摩擦等因素,因此使用任何機械的效率都小於100%。
解題時要注意:
(1)分清哪些力做功,哪些力不做功
(2)什麼是有用功,什麼是總功
(3)影響滑輪組機械效率的主要因素(初中物理中一般不考慮拉線質量)。
(4)可根據滑輪組中n=s/h 來確定動滑輪上繩子的股數
2)有關熱量、能量轉換的計算
熱量計算公式:物體溫度變化吸、放熱:Q=cmΔt;燃料燃燒放熱:Q=qm;電熱公式:Q=I2Rt
解此類題注意:①各種能量間轉換的效率②各物理量的單位統一為國際單位。
3)有關電路、歐姆定律、電功、電熱的計算
(1)電路的結構變化問題 (2)電路計算中的「安全問題」。
4)綜合應用的計算
總之,無論是解好哪種類型的物理題,除了掌握好一定的解題方法外,解題時審題是關鍵,否則將會離題萬里,前功盡棄。
審題時需注意:
(1)理解關鍵詞語(2)挖掘隱含條件(3)排除干擾因素
三.巧解計算理解符號
1.盡量用常規方法,使用通用符號答題
1) 掌握通用解題技巧,以不變應萬變。
2) 使用准確的物理符號。
比如像時間、路程、摩擦力等等,這些物理量都是有相應的通用符號的,規范的選擇即可,但是也要避免和題目中已有的符號沖突。
3) 簡單的技巧練到極致就是絕招。
以上所有方法,可能同學們剛運用時感到吃力,但是只是有意識地訓練之後,慢慢就可以游刃有餘了。所以加強基本方法的訓練至關重要。
2.對復雜的數值計算題,先解出符號表達
1)掌握數值計算題應用符號公式的「三部曲」。
物理數值計算題的答題,要求明確寫出應用公式,並在帶入數值時,必須既有數據又有單位,而且書寫清晰,計算正確。間接表示為「三部曲」,即(A)公式;(B)代入;(C)結果。
2)代入數值計算題的表達符號要標准化。
當計算題中涉及到物理量單位時,要用課本上規定的國際單位符號來表示。
3)把符號替換為數值,數值計算題答案書寫要合理化。
2. 小學數學加減計算方法及技巧
小學數學加減計算方法和技巧:
1、在一個算式里只有同一級運算,就從左往右依次計算。能用簡算的就用算,如用加法結合律和用減法的性質,都能使運算簡便。
2、在有括弧的算式里,先算括弧里的再算括弧外的。
3、計算時先觀察題目的結構和特徵,然後選用合理的方法去計算,計算時認真細心,做後檢查。
3. 小學速算方法與技巧是什麼
1、湊整法:根據運算定律和運算性質,把算式中能湊成整數(特別是整十數、整百數等)的部分合並或拆開,然後求得結果。
例如:8+4.1+1+5.9
=(8+1)+(4.1+5.9)
=10+10
=20
例如:1.25×18
=1.25×(10+8)
=1.25×10+1.25×8
=12.5+10
=22.5
例如:78×98
=78×(100-2)
=78×100-78×2
=7800-156
=7644
2、變化法:適當轉變運算方法,即以加代減,以減代加,以乘代除,以除代乘;或改變運算順序,或利用約分、加減進行化簡等。
例如:4.7×0.25+7.3÷4
=(4.7+7.3)×0.25
=3
例如:3÷4-0.5÷0.7-0.3÷0.4+5÷7
=(3÷4-0.3÷0.4)+(5÷7-0.5÷0.7)
=0
簡便計算的作用:
1、簡便計算使得學生在短暫的時間內快速准確地算出正確答案。
2、簡便運算與四則混合運算的演算法是有區別的,它不按四則混合運算的運算順序進行運算,而是運用各種運算性質和運算定律進行運算,是一種特別的運算方式。
3、「簡便運算」的試題種類很多,一般可分為兩大類:用「運算定律」和「運算性質」進行運算。
4、在數學當中運用簡便計算方法可以很大程度節省做題的時間。
4. 數學計算技巧方法
一、加一法———頭相同,個位相加之相加之和等於10.
公式:一個頭加「1」後,頭×頭;尾×尾,連起來。
例:62×68=4216
解:(6+1)×6=42 2×8=16 連起來得4216.
練習題:73×77 28×22 64×66 43×47
二、加尾數法——尾相加,十位相加等於10.
公式:頭×頭加一個尾;尾尾連起來
例:26×86=2236
解:2×8+6=22 6×6=36 連起來得2236
練習題:38×78 47×67 85×25 64×44
三、減1法———個位數是1和9且兩個首數相差1.
公式:用較大數的首數平方減去1,後面連寫99.
例:81(較大數)×79=6399
解:82-1=63 後面連寫99,得6399.
練習題:61×59 71×69 29×31 49×51
四、求兩個一百零幾數的積,一數加另一數尾數法。
公式:一數+另一數尾數;尾×尾, 連起來。
例:105×107=11235
解:105+7=112 5×7=35 連起來得11235.
練習題:108×109 106×104 102×108 103×105
一、兩位數乘兩位數。 1.十幾乘十幾: 口訣:頭乘頭,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 註:個位相乘,不夠兩位數要用0佔位。 2.頭相同,尾互補(尾相加等於10): 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 註:個位相乘,不夠兩位數要用0佔位。 3.第一個乘數互補,另一個乘數數字相同: 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:37×44=?
文檔沖億季,好禮樂相隨
mini ipad移動硬碟拍立得網路書包
1 解:3+1=4 4×4=16 7×4=28 37×44=1628 註:個位相乘,不夠兩位數要用0佔位。 4.幾十一乘幾十一: 口訣:頭乘頭,頭加頭,尾乘尾。 例:21×41=? 解:2×4=8 2+4=6 1×1=1 21×41=861 5.11乘任意數: 口訣:首尾不動下落,中間之和下拉。 例:11×23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分別在首尾
2 11×23125=254375 註:和滿十要進一。
一、兩位數乘兩位數。 1.十幾乘十幾: 口訣:頭乘頭,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10): 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同: 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:37×44=?
5. 24點計算方法與技巧是什麼
24點計算方法:
把4個整數(一般是正整數)通過加減乘除以及括弧運算,使最後的計算結果是24。
技巧:
1、利用3×8=24、4×6=24、2×12=24求解。把牌面上的四個數想辦法湊成3和8、4和6、2和12,再相乘求解。實踐證明,這種方法是利用率最大、命中率最高的一種方法。
2、利用0、1的運算特性求解。如3、4、4、8可組成3×8×(4÷4)=24。又如4、7、1、1可組成4×1(7-1)×1=24。
3、看4張牌中是否有2,3,4,6,8,Q,如果有,考慮用乘法,將剩餘的3個數湊成對應數。如果有兩個相同的6,8,Q,比如已有兩個6,剩下的只要能湊成3,4,5都能算出24,已有兩個8,剩下的只要能湊成2,3,4,已有兩個Q,剩下的只要能湊成1,2,3都能算出24。
注意事項:
一副牌中抽去大小王剩下52張,任意抽取4張牌,利用四則運算把牌面上的數算成24。每張牌能且只能用一次。
經計算機准確計算,一副牌(52張)中,任意抽取4張可有1820種不同組合,其中有458個牌組算不出24點,如A、A、A、5。
6. 簡便運算的技巧和方法有哪些
數學簡便計算方法:
一、裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」。
(3)分母上幾個因數間的差是一個定值。
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。
例題
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256,可使計算簡便。
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
7. 簡便計算的竅門和技巧是什麼
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,可以「帶符號搬家」。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括弧法
在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
方法三:乘法分配律法
分配法:括弧里是加或減運算,與另一個數相乘,注意分配;提取公因式:注意相同因數的提取;注意構造,讓算式滿足乘法分配律的條件。
方法四:拆分法
拆分法屬於為了方便計算把一個數拆成幾個數,這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小。
方法五:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。