1. 數學怎麼配方
配方只適用於等式方程,配方就是把等式通過左右兩邊同時加或減去一個數,使這個等式的左邊的式子變成完全平方式的展開式,再因式分解就可以解方程了,也就是說配方法這個方法是根據完全平方公式:(a+或-b)平方=a平方+或-2ab+b平方 得出的。
比如你說的這個式子,不是等式就不能用配方法來解,我來舉個例子:
2a²-4a+2=0
a²-2a+1=0 (二次項系數要先化為1,方便使用配方法解題,所以等式兩邊同除二次項系數2)
(a-1)²=0 (上一步的式子發現左邊是完全平方式,所以根據完全平方公式,將a²-2a+1因式分解為(a-1)²,這樣就完成了配方)
a-1=0(最後等式兩邊同時開平方)
a=1(得到結果)
(1)數學中如何使用配方法擴展閱讀:
在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。
配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式兩邊加上y2 = (b/2a)2,可得:
這個表達式稱為二次方程的求根公式。
2. 數學中一元二次方程配方的方法具體是什麼
1、定義:配方法就是將一個式子(包括有理式和超越式)或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法。這種方法常常被用到式子的恆等變形中,以挖掘題目中的隱含條件,是解題的有力手段之一。
2、解一元二次方程的配方法:在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。
3、 示例:【例】解方程:2x²+6x+6=4
4、分析:原方程可整理為:x²+3x+3=2,x²+2×3/2x=-1,x²+2×3/2x+(3/2)²=-1+(3/2)²,(x+3/2)²=5/4,x+3/2=±√5/2,即:x1,2=(-3±√5)/2。
3. 數學的配方法怎麼配公式是什麼
若x²+kx+n,則配中間項系數一半的平方。就醬。至於後邊的數字,需要幾就加或減幾
4. 用配方法怎麼做配方法的公式是什麼
x²-2x-8=0
x²-2x+1-1-8=0
x²-2x+1-9=0
(x-1)²=9
x-1=±3
解得
x1=4 x2=-2
5. 數學中配方法是指什麼
配方法是一種重要的數學方法,它不僅在解一元二次方程上有所應用,而且在數學的其他領域也有著廣泛的應用。
配方法的理論根據是完全平方公式a2±2ab+b2=(a±b)2,把公式中的a看做未知數x,並用x代替,則有x2±2xb+b2=(x±b)2。
6. 配方法的公式是什麼
配方法是根據完全平方公式:(a+/-b)²=a²+/-2ab+b²得出的。
配方只適用於等式方程,就是把等式通過左右兩邊同時加或減去一個數,使這個等式的左邊的式子變成完全平方式的展開式,再因式分解就可以解方程了。
舉例:
2a²-4a+2=0
a²-2a+1=0(二次項系數要先化為1,方便使用配方法解題,所以等式兩邊同除二次項系數2)
(a-1)²=0(上一步的式子發現左邊是完全平方式,所以根據完全平方公式,將a²-2a+1因式分解為(a-1)²,這樣就完成了配方)
a-1=0(最後等式兩邊同時開平方)
a=1(得到結果)
(6)數學中如何使用配方法擴展閱讀
配方法的應用
1、用於比較大小:
在比較大小中的應用,通過作差法最後拆項或添項、配成完全平方,使此差大於零(或小於零)而比較出大小。
2、用於求待定字母的值:
配方法在求值中的應用,將原等式右邊變為0,左邊配成完全平方式後,再運用非負數的性質求出待定字母的取值。
3、用於求最值:
「配方法」在求最大(小)值時的應用,將原式化成一個完全平方式後可求出最值。
4、用於證明:
「配方法」在代數證明中有著廣泛的應用,學習二次函數後還會知道「配方法」在二次函數中也有著廣泛的應用。
7. 數學里的配方法怎麼用
若x²+kx+n,則配中間項系數一半的平方.
舉例說明 x²+4x+16
首先,配中間項系數一半的平方也就是2²=4.
原式=x²+4x+4+(16-4)=(x+2)²+12
8. 初中數學配方法
配方法是解一元二次方程的一種解法,也即是把一個一元二次方程配成完全平方的形式,再開方即可。對於一個二次項是1的方程,配方的時候先把常數項移到方程右邊,然後方程兩邊加上一次項系數一半的平方,最後把左邊寫成完全平方,正確解出方程就可以了,如果二次項系數不是1,先把二次項系數化成1,然後和二次項是1的配方是一樣的,認真做題就可以了。
9. 數學中的「配方法」怎麼配方
在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式兩邊加上y2= (b/2a)2,可得:
這個表達式稱為二次方程的求根公式。
解方程
在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。
【例】解方程:2x²+6x+6=4
分析:原方程可整理為:x²+3x+3=2,通過配方可得(x+1.5)²=1.25通過開方即可求解。
解:2x²+6x+6=4
<=>(x+1.5)²=1.25
x+1.5=1.25的平方根
10. 初三數學的配方法怎麼算
用配方法解一元二次方程的步驟:
①把原方程化為ax²+bx+c=0(a≠0)的形式;
②方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊;
③方程兩邊同時加上一次項系數一半的平方;
④把左邊配成一個完全平方式,右邊化為一個常數;
⑤如果右邊是非負數,就可以進一步通過直接開平方法來求出它的解,如果右邊是一個負數,則判定此方程無實數解.
2x²−4x=1(配方法)
解:2x²−4x=1