導航:首頁 > 研究方法 > 科文特亞的鹼鋅分析方法

科文特亞的鹼鋅分析方法

發布時間:2022-04-26 17:26:37

如何製取氧化鋅

1、由碳酸鋅煅燒而得。 ZnCO3=ZnO+CO2↑
2、由氫氧化鋅煅燒分解而得。
3、由粗氧化鋅冶煉成鋅,再經高溫空氣氧化而成。
4、由熔融鋅氧化而得。
5、採用的方法有經鋅錠為原料的間接法(也稱法國法),以鋅礦石為原料的直接法(也稱美國法)和濕法三種。
間接法。反應方程式:2Zn+O2=2ZnO
操作方法:將電解法製得的鋅錠加熱至600~700℃熔融後,置於耐高溫坩堝內,使之1250~1300℃高溫下熔融氣化,導入熱空氣進行氧化,生成的氧化鋅經冷卻、旋風分離,將細粒子用布袋捕集,即製得氧化鋅成品。
直接法。反應方程式:
C+O2=CO2
CO2+C=2CO
ZnO+CO=Zn(蒸氣)+CO2
Zn(蒸氣)+CO+O2=ZnO+CO2
操作方法:將焙燒鋅礦粉(或含鋅物料)與無煙煤(或焦炭悄)、石灰石按1:0.5:0.05比例配製成球。在1300℃經還原冶煉,礦粉中氧化鋅被還原成鋅蒸氣,再通入空氣進行氧化,生成的氧化鋅經捕集,製得氧化鋅成品。
濕法。用鋅灰與硫酸反應生成硫酸鋅,再將其分別與碳酸鈉和氨水反應,以製得的碳酸鋅和氫氧化鋅為原料制氧化鋅。反應方程式如下:
Zn+H2SO4=ZnSO4+H2↑
ZnSO4+Na2CO3=ZnCO3↓+Na2SO4
ZnSO4+2NH3·H2O=Zn(OH)2↓+(NH4)2SO4
以碳酸鋅為原料,經水洗、乾燥、煅燒、粉碎製得產品氧化鋅。ZnCO3→ZnO+CO2↑
以氫氧化鋅為原料,經水洗沉澱、乾燥、煅燒、冷卻、粉碎製得產品氧化鋅。Zn(OH)2→ZnO+H2O

⑵ 氧化鋅實驗室製法

常用
均勻沉降法:按硝酸鋅濃度0.1mol/L,尿素濃度0.4mol/L配置500mL混合溶液,放入95。C的恆溫水浴中,攪拌保溫8h,待所得溶液冷卻後,放入離心機中,用蒸餾水洗滌2—3次;再放入烘箱中乾燥24~48h,烘箱溫度保持在60。C左右;最後,將乾燥後的樣品放入馬弗爐內煅燒4h,溫度為450。C.
連續微波法:微波爐(Panasonic);磁力真空泵,上海西山泵業有限公司;液體流量計,蘇州流量計廠;D/Max一ⅢC X 射線粉末衍射分析儀,日本理學公司;H一600一II透射電鏡、S一570掃描電鏡,日本日立公司;876—1型真空乾燥器,上海浦東躍欣科學儀器廠;72卜分光光度計,上海第三分析儀器廠。ZnSO ·7H (),AR,上海金山區興塔美興化工廠;尿素,AR,中國醫葯(集團)上海化學試劑公司。
將ZnSO ·7H ()和尿素按一定比例配成混
合溶液,裝入圖1所示的裝置中,在90℃ 微波輻
射下恆溫反應。待反應完全後,取出沉澱。分別
用pH一9.0的氨水、無水乙醇洗滌2~3次。將
所得的固體粉末,乾燥12 h。取出試樣充分研磨
後,在450℃焙燒一定時間,即得納米ZnO粉末。
微波輻照下,ZnSO ·7H O和尿素制備納
米Zn()反應機理如下:
90℃ 時尿素發生分解:
CO(NH 2)2+H 2O= C()2+2NH 3
3Zn + + C() + 4OH + H 2()=ZnCO3 ·2Zn(OH )2 ·
H 2()
450℃ 焙燒時:
ZnCO ·2Zn(OH),·H O=3ZnO+C(),+2H PO
原位生成法:
稱取一定量的ZnClz,溶於水中,滴入HC1並用玻璃棒攪
拌得無色透明溶液。在攪拌的同時滴加NaOH溶液至PH=
8 ,得到大量白色rZn(OH) 沉澱。用蒸餾水洗滌數次,得
到純Zn(OH),。再稱取一定量的PVP溶於水中,然後與zn
(OH) 混合攪拌均勻。將混合液置於高壓釜內,常溫下充壓
至lMPa,在160oC下熱壓反應3h,得到產物。

還有
物理法
物理法包括機械粉碎法和深度塑性變形法。機
械粉碎法是採用特殊的機械粉碎、電火花爆炸等技
術,將普通級別的氧化鋅粉碎至超細。其中張偉l_J
等人利用立式振動磨製備納米粉體,得到了a—Alz
O3、Zn0、MgSiO3等超微粉,最細粒度達到0.1 m。
此法雖然工藝簡單,但卻具有能耗大,產品純度低,
粒度分布不均勻,研磨介質的尺寸和進料的細度影
響粉碎效能等缺點。最大的不足是該法得不到1一
lOOnm的粉體,因此工業上並不常用此法;而深度
塑性變形法是使原材料在凈靜壓作用下發生嚴重塑
性形變,使材料的尺寸細化到納米量級。這種獨特
的方法最初是由IslamgalievE『]等人於1994年初發
展起來的。該法製得的氧化鋅粉體純度高、粒度可
控,但對生產設備的要求卻很高。
總的說來,物理法制備納米氧化鋅存在著耗能
大,產品粒度不均勻,甚至達不到納米級,產品純度
不高等缺點,工業上不常採用,發展前景也不大。
2.2 化學法
化學法具有成本低,設備簡單,易放大進行工業
化生產等特點。主要分為溶膠一凝膠法、醇鹽水解
法、直接沉澱法、均勻沉澱法等。
2.2.1 溶膠一凝膠法
溶膠一凝膠法制備納米粉體的工作開始於20世
紀6O年代。近年來,用此法制備納米微粒、納米薄
膜、納米復合材料等的報道很多。它是以金屬醇鹽
Zn(OR) 為原料,在有機介質中對其進行水解、縮聚
反應,使溶液經溶膠化得到凝膠,凝膠再經乾燥、煅
燒成粉體的方法[引。此法生產的產品粒度小、純度
高、反應溫度低(可以比傳統方法低400-500"C),
過程易控制;顆粒分布均勻、團聚少、介電性能較好。
但成本昂貴,排放物對環境有污染,有待改善。
水解反應:Zn(OR)2+2H2 O— Zn(OH)2+
2ROH
縮聚反應:Zn(OH)2一ZnO+H2O
2.2.2 醇鹽水解法
醇鹽水解法是利用金屬醇鹽在水中快速水解,
形成氫氧化物沉澱,沉澱再經水洗、乾燥、煅燒而得
到納米粉體的方法 引。該法突出的優點是反應條件
溫和,操作簡單。缺點是反應中易形成不均勻成核,
且原料成本高。例如以Zn(OC2H )。為原料,發生
以下反應:
Zn(OC2H5)2+2H20一Zn(OH)2+2G H5OH
Zn(OH)2— ZnO+H2O
2.2.3 直接沉澱法
直接沉澱法是制備納米氧化鋅廣泛採用的一種
方法。其原理是在包含一種或多種離子的可溶性鹽
溶液中加人沉澱劑,在一定條件下生成沉澱並使其
沉澱從溶液中析出,再將陰離子除去,沉澱經熱分解
最終製得納米氧化鋅。其中選用不同的沉澱劑,可
得到不同的沉澱產物。就資料報道看,常見的沉澱
劑為氨水 、碳酸氫銨 引、尿素 。 等。
以NH。·H。O作沉澱劑:
Zn。++2NH3·H20一Zn(OH)2+2NH4+
Zn(OH)2— ZnO+H2O
以碳酸氫銨作沉澱劑:
2Zn。++ 2NH4 HCo3一Zn2(OH)2 CO3+
2NH4+
Zn2(OH)2CO3— 2ZnO + CO2+ H2O
以尿素作沉澱劑:
CO(NH2)2+ 2H20一CO2+2NH3·H2O
3Zn。++CO3。一+4OH一+ H20一ZnCO3·
2Zn(OH)2 H2O
ZnCO3·2Zn(OH)2 H20一ZnO+C02+ H2O
直接沉澱法操作簡單易行,對設備技術要求不
高,產物純度高,不易引人其它雜質,成本較低。但
是,此方法的缺點是洗滌沉澱中的陰離子較困難,且
生成的產品粒子粒徑分布較寬。因此工業上不常
用。
2.2.4 均勻沉澱法
均勻沉澱法是利用某一化學反應使溶液中的構
晶微粒從溶液中緩慢地、均勻地釋放出來。所加入
的沉澱劑並不直接與被沉澱組分發生反應,而是通
過化學反應使其在整個溶液中均勻緩慢地析出。常
用的均勻沉澱劑有尿素(CO(NHz)z)和六亞甲基四
胺(C6 H 。N。)。所得粉末粒徑一般為8—6Onm。其
中衛志賢 加 等人以尿素和硝酸鋅為原料制備氧化
鋅。他們得出的結論是:溫度是影響產品粒徑的最
敏感因素。溫度低,尿素水解慢,溶液中氫氧化鋅的
過飽和比低,粒徑大;溫度過高,尿素產生縮合反應
生成縮二脲等,氫氧化鋅過飽和比低,溶液粘稠,不
易乾燥,最終產品顆粒較大。另外,反應物的濃度及
尿素與硝酸鋅的配比也影響溶液中氫氧化鋅的過飽
和比。濃度越高,在相同的溫度下,氫氧化鋅的過飽
和比越大。但是過高的濃度和尿素與硝酸鋅的比
值,使產品的洗滌、乾燥變得困難,反應時間過長,也
將造成後期溶液過飽和比降低,粒徑變大。因此他
們得到的最佳工藝條件為:反應溫度~130~C、反應
時間150min、尿素與硝酸鋅的配比2.5—4.0:1(摩
爾比)。
由此可看出,均勻沉澱法得到的微粒粒徑分布
較窄,分散性好,工業化前景佳,是制備納米氧化鋅
的理想方法。
2.2.5 水熱法
水熱法最初是用來研究地球礦物成因的一種手
段,它是通過高壓釜中適合水熱條件下的化學反應
實現從原子、分子級的微粒構築和晶體生長。該法
是將雙水醋酸鋅溶解在二乙烯乙二醇中,加熱並不
斷攪拌以此得到氧化鋅,再經過在室溫下冷卻,用離
心機將水分離最終得到氧化鋅粉末[]。此法制備的
粉體晶粒發育完整,粒徑小且分布均勻,團聚程度
小,在燒結過程中活性高。但缺點是設備要求耐高
壓,能量消耗也很大,因此不利於工業化生產。
2.2.6 微乳液法
微乳液通常是由表面活性劑、助表面活性劑(通
常為醇類)、油(通常為碳氫化合物)和水(或電解質
水溶液)組成的透明的、各向同性的熱力學穩定體
系。微乳液中,微小的「水池」(water poo1)被表面
活性劑和助表面活性劑所組成的單分子層界面所包
圍而形成微乳顆粒,其大小可控制在幾個至幾十納
米之間。微小的「水池」尺度小且彼此分離,因而不
構成水相,這種特殊的微環境已被證明是多種化學
反應的理想介質 ]。徐甲強[n 等人在硝酸鋅溶液
中加入環己烷、正丁醇、ABS攪拌,再加入雙氧水,
並用氨水作為沉澱劑,最終合成了顆粒小(19nm)、
氣體靈敏度高和工作溫度低的氧化鋅。微乳液法制
備的納米氧化鋅,粒徑分布均勻,但是團聚現象嚴
重 H]。這是由於微乳液法製得的納米材料粒徑太
小,比表面大,表面效應較嚴重所致。

⑶ 各項分析水樣的採集要求及方法

(一)取樣體積

1)水質簡分析:其項目有pH、游離CO2、氯離子、硫酸根、重碳酸根、碳酸根、氫氧根、鉀離子、鈉離子、鈣離子、鎂離子、總硬度、總鹼度、暫時硬度、永久硬度、負硬度、總礦化度,采樣體積為0.5~1L。

2)水質全分析:其項目除含簡分析項目外,另增加銨離子、全鐵(二價鐵離子和三價鐵離子)、亞硝酸根、硝酸根、氟離子、磷酸根、可溶性二氧化硅、耗氧量。采樣體積為2~4L。

3)除簡、全分析外,其他項目則按各項取樣要求取樣。

(二)現場檢測的項目

對於水中極易發生變化的項目,如pH、游離CO2、亞硝酸根、氧化還原電位(Eh)等有特殊要求時應在現場進行測定。

對於碳酸和重碳酸型礦泉水中的游離CO2,重碳酸根、p H、鈣、鎂、鐵(二價和三價)等,只有在現場測定,才能保證提供正確的結果。

(三)各項分析水樣的採取與保存要求

各類分析水樣採好後,必須立即在瓶上貼好標簽,再用紗布、石蠟(或火漆)密嚴封好。各個樣品的標簽上要立即填上編號、取樣地點,時間、岩性、深度、水溫、氣溫、濁度、水源種類,化學處理方法以及分析要求(測定項目)等。

1)比較穩定組分水樣的採取:檢測水中鉀、鈉、鈣、鎂、氯根、碳酸根、硫酸根、重碳酸根、氫氧根、硝酸根、氟、溴、硼、鉻(六價)、砷、鉬、總鹼度,暫時鹼度、負硬度、永久硬度、固形物、灼燒殘渣、灼燒減量及可溶性硅酸(小於100mg/L)等,應用硬質玻璃瓶或聚乙烯塑料瓶採取水樣2~4L。以石蠟或火漆密封瓶口,陰涼存放。盡快送到實驗室,最多不得超過10天,實驗室收到樣品後,必須在10天內分析完畢。

2)測定碘、耗氧量(COD)水樣的採取:測定碘和耗氧量的水樣,應用硬質玻璃瓶或聚乙烯塑料瓶採取0.4L,以石蠟封好瓶口,立即送檢,最多不得超過三天,實驗室收到樣品後,必須在兩天內分析完畢,

3)侵蝕性CO2水樣的採取:水中侵蝕性CO2的檢測,應在取水質簡分析或全分析樣品的同時,另取一瓶250m L的水樣,加入2g經過純制的碳酸鈣粉末(或大理石粉末),瓶內應留有10~20m L容積的空間,密封送檢。若水樣僅需侵蝕性CO2數據時,應在相同的條件下,另取一小瓶不加大理石粉的水樣,檢測原樣中的鹼度。

4)測定硫化物水樣的採取:在500mL的玻璃瓶中,先加入10mL20%醋酸鋅和1mL1mol氫氧化鈉溶液,然後往瓶中裝滿水樣,蓋好瓶蓋,反復振搖數次,再以石蠟密封瓶口,並貼好標簽,註明加入乙酸鋅溶液的體積,送檢。

5)測定溶解氧水樣的採取:溶解氧的測定,最好利用測氧儀,在現場進行測定,若無此條件時,在取樣前先准備一個已知體積的200~300mL的玻璃瓶,先用欲取水樣洗滌2~3次後,將虹吸管直接通入瓶底取樣,待水樣從瓶口溢出片刻,再慢慢將虹吸管從瓶中抽出,用移液管加入1mL鹼性碘化鉀溶液(如水的硬度大於7mmol/L時,可再多加2mL),然後加入3mL氯化錳溶液,但應注意:加鹼性碘化鉀和氯化錳溶液時,移液管要插入瓶底再放出溶液,迅速塞好瓶塞(不留空間),搖勻後密封,記下加入試劑的總體積及水溫。如水樣中含有大量有機物及還原性物質(如硫化氫、亞硫酸根以及大於1mg/L的亞硝酸根離子等)時,需另用一玻璃瓶採取水樣,加入0.5mL溴水(或高錳酸鉀溶液)塞好瓶口,搖勻,放置24小時,然後加入0.5mL水楊酸溶液,以除去過量的氧化劑,搖動15分鍾後,再按上述手續進行。

6)測定逸出氣體樣品的採取:逸出氣體試樣的採取,可利用排水集氣原理。選一具有兩孔橡皮塞的500mL的玻璃容器,在橡皮孔中,插入一長一短兩支玻璃管,在瓶外部分,各套上橡皮管和彈夾,在插入瓶底的一支玻璃管上再接上一個玻璃漏斗。取樣時,打開兩個彈簧夾,將容器內注滿水(應留一點空間)後,把它倒立全部浸沒於水中,將漏鬥口對准逸出氣泡,待氣體充滿容器後,夾好彈簧夾,取出水面,密封、送檢。

⑷ 怎樣鑒別硫酸鋅,碳酸鈉,硝酸納,亞硫酸鈉

鑒別硫酸鋅,碳酸鈉,硝酸納,亞硫酸鈉:
原理:利用酸鹼鹽之間的反應,根據實驗現象來區分。
步驟一:往四種物質中加入稀鹽酸,有氣體生成的是:碳酸鈉,亞硫酸鈉。
1.生成的氣體無色無味的是:碳酸鈉。
化學方程式:Na2CO3+2HCl==2NaCl+CO2↑+H2O
2.生成的氣體是有刺激性氣味的是:亞硫酸鈉。
化學方程式:Na2SO3+2HCl==2NaCl+SO2↑+H2O
步驟二:往剩下的兩種物質中加入硝酸鋇,有白色沉澱生成的是:硫酸鋅,沒有沉澱生成的是:硝酸鈉。
生成白色沉澱的是:硫酸鋅。
化學方程式:ZnSO4+Ba(NO3)2=Zn(NO3)2+BaSO4↓

⑸ 如何配製標准鋅試劑溶液

硼酸鹽緩沖溶pH 8.8―9 取氫氧化鈉8.32g溶於水,加氯化鉀37.3g,硼酸31g,溶解後,用水稀至1000ml。
鋅標准溶液配製方法同極譜法,逐級稀釋配成1ml含10噸鋅的標准溶液。
在鉛鋅礦加工,鉛鋅礦生產線中標准曲線的繪制:取含0、20、40、60.....100ug鋅的標准搖臼夜,分另U置於50mi比色管中,加入0.25g硫酸銨,用水稀釋至20mi,搖動至硫酸銨溶解後,加入抗壞血酸鈉鹽溶液2mi,搖勻放置10分鍾,在分光光度計上,用lcm比色皿,於波長620nm處測量吸光度,並繪制標准曲線。
分析手續:稱取0.1000―0.5000g試樣,置於250mi燒杯中,加入氫氟酸4―5滴,硝酸10mi,氯酸鉀0.3加熱至試樣完全溶解,加入鹽酸1―2ml,繼續加熱蒸發至剩1―2ml。取下,加氯化銨2―3g,攪勻,加氨水20ml和水毫升(如有鎳存在,再加入1%丁二肟溶液2ml),煮沸2分鍾。取下,冷至室溫,加入過氧化氫4滴,搖勻,放置3―5分鍾,加銅試劑5ml,搖勻。移入預先盛有10ml氨水的100ml容量瓶中,用水稀釋至刻度,搖勻,干過濾。
吸取干過濾後的濾液5―10ml,置於1,00ml燒杯中,加熱至無氨味,取下稍冷。加硫酸2―3ml,加熱冒煙。取下,再加硫酸―硝酸(1:1)數滴,高氯酸1―2滴,加熱蒸發至近干。取下冷卻,加入5ml水,溫熱使鹽類溶解。加甲基橙指示劑1滴,用1mol/L氫氧化鈉溶液中和至剛呈現黃色。將溶液移入50ml比色管中,加抗壞血酸鈉鹽溶液2ml,以下按標准系列配製手續進行顯色和比色.

⑹ 試論土壤中氮、磷、鉀的測定原理與方法

第五章 土壤全氮的測定(凱氏蒸餾法)

5.1 方法提要 樣品在加速劑的參與下,用濃硫酸消煮時,各種含氮有機化合物,經過復雜的高溫分解反應,轉化為銨態氮。鹼化後蒸餾出來的氨用硼酸吸收,以酸標准溶液滴定,計算土壤全氮含量(不包括硝態氮)。
包括硝態和亞硝態氮的全氮測定,在樣品消煮前,需先用高錳酸鉀將樣品中的亞硝態氮氧化為硝態氮後,再用還原鐵粉使全部硝態氮還原,轉化成銨態氮。
5.2 適用范圍 本方法適用於各類土壤全氮含量的測定。
5.3 主要儀器設備
5.3.1 消化管(與消煮爐、定氮儀配套),容積250mL。
5.3.2 定氮儀。
5.3.3 可控溫鋁錠消煮爐(升溫不低於400℃)。
5.3.4 半微量滴定管,10mL。
5.3.5 分析天平(精確到0.0001g)。
5.4 試劑
5.4.1 硫酸 [ρ(H2SO4)=1.84g•mL-1];
5.4.2 硫酸標准溶液 [c(1/2H2SO4)=0.01mol•L-1]或鹽酸標准溶液[c(HCl)=0.01mol•L-1]:配製及標定參見附錄1。
5.4.3 氫氧化鈉溶液 [ρ(NaOH)=400g•L-1 ]:稱取400g氫氧化鈉溶於水中,稀釋至1L。
5.4.4 硼酸—指示劑混合液。
硼酸溶液 [ρ(H3BO3)=20g•L-1]:稱取硼酸20.00g溶於水中,稀釋至1L。
混合指示劑:稱取0.5g溴甲酚綠和0.1g甲基紅於專用玻璃研缽中,加入少量95%乙醇,研磨至指示劑全部溶解後,加95%乙醇至100mL。使用前,每升硼酸溶液中加5mL混合指示劑,並用稀酸或稀鹼調節至紅紫色(PH約4.5)。此液放置時間不宜過長,如在使用過程中PH有變化,需隨時用稀酸或稀鹼調節。
5.4.5 加速劑:稱取100g硫酸鉀,10g硫酸銅(CuSO4•5H2O),1g硒粉於研缽中研細,必須充分混合均勻。
5.4.6 高錳酸鉀溶液[ρ(KMnO4)=50g•L-1 ]:稱取25g高錳酸鉀溶於500mL水,貯於棕色
瓶中。
5.4.7 硫酸溶液(1:1)。
5.4.8 還原鐵粉:磨細通過0.149mm孔徑篩。
5.4.9 辛醇。
5.5 分析步驟
5.5.1 稱樣:稱取通過0.25mm(60號篩)孔徑篩的風干試樣0.3g(含氮約1mg,精確到0.0001g)。
5.5.2 土樣消煮:①不包括硝態和亞硝態氮的消煮:將試樣送入乾燥的消化管底部,加入2.0加速劑,加水約2mL濕潤試樣,再加8mL濃硫酸,搖勻。將消化管置於控溫消煮爐上,用小火加熱,約200℃,待管內反應緩和時(約10~15min),加強火力至375℃。待消煮液和土粒全部變為灰白稍帶綠色後,再繼續消煮1h,冷卻,待蒸餾。在消煮試樣的同時,做兩份空的試驗,空白試驗除不加土壤外,其他操作和試樣一樣。
②包括硝態氮和亞硝態氮的消煮:將試樣送入乾燥的消化管底部,加1mL高錳酸鉀溶液,輕輕搖動消化管,緩緩加入2mL 1:1硫酸溶液,不斷轉動消化管,放置5 min後,再加入1滴辛醇。通過長頸漏斗0.5g (±0.01g) 還原鐵粉送入消化管底部,瓶口蓋上彎頸漏斗,轉動消化管,使鐵粉與酸接觸,待劇烈反應停止時(約5min),將消化管置於控溫消煮爐上緩緩加熱45 min(管內土液應保持微沸,以不引起大量水分丟失為宜)。停止加熱,待消化管冷卻後,加2.0g加速劑和8 mL濃硫酸,搖勻。按「不包括硝態和亞硝態氮的消煮」的步驟,消煮至試液完全變成黃綠色,再繼續消煮1 h,冷卻,蒸餾。在消煮試樣的同時,做兩份空白試驗。
5.5.3 氨的蒸餾和滴定:蒸餾前先按儀器使用說明書檢查定氮儀,並空蒸0.5 h洗凈管道。待消煮液冷卻後,向消化管內加入約60 mL水和35 mL 400 g•L-1氫氧化鈉溶液,搖勻,置於定氮儀上。於三角瓶中加入25 mL 20 g•L-1 硼酸—指示劑混合液,將三角瓶置於定氮儀冷凝器的承接管下,管口插入硼酸溶液中,以免吸收不完全。蒸餾5 min,用少量的水洗滌冷凝管的末端,洗液收入三角瓶內。每測完1個樣後用空試管裝清水清洗約2min。
用0.01 mol•L-1硫酸(或0.01 mol•L-1鹽酸)標准溶液滴定餾出液,由藍綠色至剛變為紅紫色。記錄所用酸標准溶液的體積。空白測定所用酸標准溶液的體積,一般不得超過0.4 mL。
5.6 結果計算
土壤全氮(N),g •kg-1 = [c•(V-V0) ×0.014/m] ×1000
V0——滴定空白時所用酸標准溶液的體積,mL;
c——酸標准溶液的濃度,mol•L-1;
0.014——氮原子的毫摩爾質量;
m——風干試樣質量,g;
1000——換算成每千克含量。
平行測定結果用算術均值表示,保留小數點後兩位。
5.7 精密度 平行測定結果允許相差:
土壤含氮量(g •kg-1) 允許絕對相差(g •kg-1)
>1 ≤0.05
1~0.6 ≤0.04
<0.6 ≤0.03
5.8 注釋
①因試樣烘乾過程中可能使全氮量發生變化,因此土壤全氮用風干樣品測定。如果需要提供烘乾基含量,可測定土壤水分進行折算。折算公式為:
土壤全氮(烘乾基),g •kg-1 =土壤全氮(風干基),g •kg-1×100/[100-ω(H2O)]
式中:ω(H2O)——風干土水分含量,%。
②試樣的粒徑,這里採用0.25mm孔徑篩,但如果含氮量高,稱量<0.5g時,則應通過0.149mm孔徑篩。
③一般土壤中硝態氮含量不超過全氮含量的1%,故可忽然不計。如硝態氮含量高,則要用高錳酸鉀和鐵粉預處理,硝態氮的回收率在90%以上。
④某些還原鐵粉會有大量氮,在試劑選擇上應注意。
⑤消煮的溫度應控制在360~400℃范圍內,此時,消煮的土液保持微沸,硫酸蒸汽在消化管上部1/3處冷凝流回。超過400℃土液將劇烈沸騰,硫酸蒸汽達到消化管頂部甚至溢出,將引起硫酸銨的熱分解而導致氮素損失。
⑥蒸餾時間一般為5 min,但由於儀器型號及蒸餾電流設置不同,應首先作試驗確定,即用納氏試劑逐分鍾檢查蒸餾液中是否含有銨。
第六章 鹼解氮的測定(鹼解擴散法)

6.1 方法原理 在擴散皿中,用1.0mol/LNaOH水解土壤,使易水解態氮(潛在有效氮)鹼解轉化為NH3,NH3 擴散後為H3BO3 所吸收。H3BO3 吸收液中的NH3 再用標准酸滴定,由此計算土壤中鹼解氮的含量。
6.2 主要儀器
擴散皿、半微量滴定管、恆溫箱。
6.3 試劑
6.3.1 1.0mol/LNaOH 溶液。稱取NaOH (化學純)40.OGg溶於水,冷卻後稀釋至1L。
6.3.2 20 g••L-1 H3BO3---指示劑溶液。同5.4.4。
6.3.3 0.005mo 1/L(1/2H2SO4)標准溶液。量取H2SO4(化學純)2.83mL,加蒸餾水稀釋至5000mL,然後用標准鹼或硼酸標定之,此為0.0200mo1/L(1/2H2SO4)標准溶液,再將此標准液准確地稀釋4倍,即得0.0050mo1/L(1/2H2SO4)標准液(注1)。
6.3.4 鹼性膠液。取阿拉伯膠40.0g 和水50mL在燒杯中熱溫至70—80 ℃ 攪拌促溶,約1h後放冷。加入甘油20mL和飽和K2CO3水溶液20mL,攪拌、放冷。離心除去泡沫和不溶物,清液貯於具塞玻瓶中備用。
6.3.5 FeSO4•7H2O粉末。將FeSO4•7H2O(化學純)磨細,裝入密閉瓶中,存於陰涼處。
6.3.6 Ag2SO4飽和溶液。存於避光處。
6.4 操作步驟(注2)
稱取通過18號篩(1mm)風干土樣2.00g,置於潔凈的擴散皿外室,輕輕旋轉擴散皿,使土樣均勻地鋪平。
取H3BO3—指示劑溶液2mL放於擴散皿內室,然後在擴散皿外室邊緣塗鹼性膠液,蓋上毛玻璃(注3),旋轉數次,使皿邊與毛玻璃完全黏合。再漸漸轉開毛玻璃一邊,使擴散皿外室露出一條狹縫,迅速加入1 mol/L NaOH溶液10.0mL,立即蓋嚴,輕輕旋轉擴散皿,讓鹼溶液蓋住所有土壤。再用橡皮筋圈緊,使毛玻璃固定。隨後小心平放在40±1℃恆溫箱中,鹼解擴散24±0.5h後取出(可以觀察到內室應為藍色)內室吸收液中的NH3用0.005或0.01mol/L(1/2H2SO4)標准液滴定(注4)。
在樣品測定的同時進行空白試驗,校正試劑和滴定誤差。
6.5 結果計算
鹼解氮(N)含量(mg/kg)=[ c(V-VO)×14.0] ×10³/m
式中:C¬¬——0.005mol/L (1/2H2SO4)標准溶液的濃度(mol•L-1);
V——樣品滴定時用去0.005mol•L-1(1/2H2SO4)標准液體積(mL);
V0——空白試驗滴定時用去0.005mol••L-1(1/2H2SO4)標准液體積(mL);
14.0——氮原子的摩爾質量(g/mol-l);M—樣品質量(g);
10³——換算系數。
兩次平行測定結果允許絕對相差為5mg•kg-1。
6.6 注釋
注1:如要配非常准確的0.005mol•L-1/2H2SO4 標准液,則可以吸取—定量的NH4+-N標准溶液,在樣品測定的同時,用相同條件的擴散法標定。例如,吸取5.00mg•kg-1NH4+-N標准溶液(含NH4+—N 0.250mg)放入擴散皿外室,鹼化後擴散釋放的NH3經H3BO3吸收後,如滴定用去配好的稀標准H2SO4 液3.51mL,則標准H2SO4的農度為:
c(1/2H2SO4) = [0.00025/(3.51×0.014)]= 0.00508mol/L
注2:如果要將土壤中NO3-—N 包括在內,測定時需加FeSO4.7H2 O粉,並以Ag2SO4為催化劑,使NO3-—N還原為NH3。而FeSO4 本身要消耗部分NaOH,所以測定時所用NaOH溶液的濃度須提高。例如2g土加1.07mol•L-1 NaOH 10mL 、FeSO4.7H2O 0.2g 和飽和Ag2SO4溶液0.1mL進行鹼解還原。
注3:由於膠液的鹼性很強,在塗膠液和洗滌擴散時,必須特別細心,慎防污染內室,造成錯誤。
注4:滴定時要用小玻璃棒小心攪動吸收液,切不可搖動擴散皿。
第七章 M3法土壤有效磷、速效鉀的測定

7.1 方法原理 M3浸提劑中的0.2mol/L HOAc—0.25 mol/L NH4NO3形成了pH2.5的強緩沖體系,並可浸提出交換性K、Ca、Mg、Fe、Mn、Cu、Zn等陽離子;0.015 mol/L NH4F—0.013 mol/L HNO3可調控P從Ca、Al、Fe無機磷源中的解吸;0.001mol/L EDTA可浸出螯合態Cu、Zn、Mn 、Fe等,因此,M3浸提劑可同時提取土壤中有效的磷、鉀、鈣、鎂、鐵、錳、銅、鋅、硼等多種營養元素。
7.2 試劑與儀器
7.2.1 試劑
7.2.1.1 硝酸銨
7.2.1.2 氟化銨
7.2.1.3 冰乙酸
7.2.1.4 硝酸
7.2.1.5 乙二胺四乙酸
7.2.1.6 酒石酸銻鉀
7.2.1.7 鉬酸銨
7.2.1.8 硫酸
7.2.1.9 抗壞血酸
7.2.1.10 磷酸二氫鉀
7.2.1.11 M3貯備液[c(NH4F)=3.75 mol/L+ c(EDTA)=0.25 mol/L]:稱取氟化銨(分析純)138.9g溶於約600mL去離子水中,搖動,再加入乙二胺四乙酸(EDTA)73.1g,溶解後用去超純水定容至1000mL,充分混勻後貯存於塑料瓶中(在冰箱內可長期使用),可供5000個樣次使用,如工作量不大,可按比例減少貯備液數量。
7.2.1.12 M3浸提劑:用1000mL或2000mL量筒量取2000mL去離子水,加入5000mL塑料桶中,稱取硝酸銨100.0g,使之溶解,加入20.0mL M3貯備液,再加入冰乙酸(即17.4 mol/L)57.5 mL和濃HNO3 (HNO3,68%~70%,分析純)4.1mL,用量筒加水稀釋至5000mL,充分混合均勻,此液pH應為2.5±0.1(貯存於塑料瓶中備用,可供100個樣次使用)。
7.2.1.13 鉬銻抗試劑:稱取酒石酸銻鉀[K(SbO)C4H4O6•1/2H2O,分析純]0.5g溶於100mL
去離子水,配製成0.5%的溶液。另稱取鉬酸銨[(NH4)6 Mo7O24•4H2O,分析純]10.0g溶於450mL水中,慢慢地加入153 mL濃H2SO4(分析純),邊加邊攪動。再將100mL 0.5%酒石酸銻鉀溶液加入鉬酸銨溶液中,最後加水至1000mL,充分搖勻,貯存於棕色瓶中,此為鉬銻貯備液。
臨用前(當天)稱取抗壞血酸(即維生素C,分析純)1.5g溶於100mL鉬銻貯備液中,混勻,此為鉬銻抗試劑,有效期24h,如保存於冰箱中則有效期較長。上述試劑中H2SO4的濃度為5.5 mol/L(1/2 H2SO4),鉬酸銨為1%,酒石酸銻鉀為0.05%,抗壞血酸為1.5%。
7.2.1.14 磷工作溶液[(P)=5mg/L]:稱取105℃烘乾2h的磷酸二氫鉀(KH2PO4,分析純)0.2195g,置於400mL去離子水中,加入濃H2SO45mL(防長黴菌,可使溶液長期保存),轉入1000mL容量瓶中,用水定容。此溶液為50 mg/L P標准溶液。准確吸取此貯備溶液25.00mL,稀釋至250mL,即為5 mg/L P標准溶液(此稀溶液不宜久存)。
7.2.1.15 K貯備液[(K)=100mg/L]:准確稱取氯化鉀KCl,105~110℃乾燥2h,分析純)01907g,溶於去離子水中,定容至1000 mL,搖勻後待用。
7.2.2 儀器
7.2.2.1 分光光度計。
7.2.2.2 火焰光度計。
7.2.2.3 恆溫振盪機(溫度控制25±℃)。
7.2.2.4 原子吸收分光光度計。
7.3 浸提步驟
用量樣器量取5.00 mL風干土壤(過2mm尼龍篩),同時稱量並記錄其質量,於100mL塑料瓶中,加入50.0mL M3浸提劑,蓋嚴後於往復振盪機(振盪強度為180r/min)上振盪5 min。然後用干濾紙過濾,收集濾液於50mL塑料瓶中。整個浸提過程應在恆溫條件下進行,溫度控制在25±1℃。
另一種方法是:選用攪拌方法代替振盪提的方法:用量樣器量取5.00mL風干土壤(過2mm尼龍篩),同時稱量並記錄其質量,用加液器加入50.0mL M3浸提劑,用攪拌器攪拌5 min。然後用干濾紙過濾,收集濾液於50mL塑料瓶中。整個浸提過程應在恆溫條件下進行,溫度控制在25±1℃。
7.4 浸出液中有效養分的定量
7.4.1 M3有效磷的測定
准確吸取2.00~10.00mL土壤浸出液(依肥力水平而異)於50mL容量瓶中,加水至約
30mL,加入5.00mL鉬銻抗試劑顯色,定容搖勻。顯色30 min後,在880nm處比色。如冬季氣溫較低時,注意保持顯色時溫度在150C以上,最好在恆溫室內濕色,以加快顯色速度。測定的同時做空白校正。
工作曲線:准確吸取5mg/L P標准溶液0、1.00、2.00、 4.00 、6.00 、8.00mL,分別放入50 mL容量瓶中,加水至約30 mL,加入5.00 mL鉬銻抗試劑顯色,定容搖勻。顯色30min後,在880nm處比出色。
結果計算:
土壤M3-P,mg/L(或mg/kg)=[ρ(P)×V×D]/ [V0或(M)]
式中:
ρ——待測液中P濃度,μg/mL;
V——顯色液體積,50mL;
D——分取倍數,浸出液體積/吸取濾液體積;
V0(或M)——土樣體積,mL或土樣質量,g。
7.4.2 M3速效鉀的測定
M3浸出液中鉀可直接用火焰光度計測定。
工作曲線:准確吸取100 mg/L K標准貯備液0、1.00、2.50、5.00、10.00、15.00、20.00mL,分別放入50 mL容量瓶中,用M3浸提劑定容,搖勻,即得0、2.00、5.00、10.00、20.00、30.00、40.00μg/mL K標准系列溶液。
結果計算:
土壤M3-K,mg/L(或mg/kg)=[ρ(K)×V]/[V0(或M)]
式中:ρ(K)——待測液中K濃度,μg/mL;
V——浸提劑體積,mL;
V0(或M)——土樣體積,mL或土樣質量,g。
7.5 注釋
7.5.1 為了避免F—以CaF2形態沉澱的再吸附,應將浸提液劑的 pH控制在2.9 以下。配製Mehlich3浸提劑時應盡量准確,這樣可不必每次都測定pH。因為溶液中的F容易對玻璃電極或復合電極造成損壞。
7.5.2 玻璃皿不會造成污染,但橡皮塞尤期是新塞子會嚴重引起Zn的污染,建議最好使用塑料瓶盛試液。如果同時測定大量與微量元素,玻、塑器皿最好事先在0.2% A1Cl3 •6H2O
或8%~10% HC1溶液中浸泡過夜,洗凈後備用,以防微量元素的污染。
7.5.3 M3法的土壤浸出液常帶顏色,有粉紅色、淡黃色或橙黃色,深淺不一,因土而異。粉紅色可能與Mn含量高或浸提出的某些有機物有關,黃色可能與Fe含量高或有機物質有關。溶液顏色可加入活性C脫色,但會對Zn造成污染,故以不加活性C為宜。
7.5.4 注意浸提溫度的控制。冬季氣溫較低時,可採取一些保溫措施。
7.5.5 比色液中NH4+ 和EDTA濃度時對P比色均有干擾,NH4+ 多時生成藍色沉澱,EDTA多時不顯色或生成白色沉澱(EDTA酸)。試驗表時,在一般鉬銻搞比色法的條件下NH4+ 不得大於0.01 mol/L)。
7.5.6 研究發現,若在工作曲線中分別加入一定量的M3浸提劑,顯色後很快會在較高P濃度的各地出現沉澱,從而影響測定結果的准確性.故選用空白校正的方法消答試劑的誤差,即:根據未知樣品所吸取浸出的體積,相應地做空白測定(不加顯色劑),再從未知樣品的結果中扣除空白值。
7.5.7 若浸出液中鉀的濃度超出測定范圍,應用M3浸提劑稀釋後再測定。
7.5.8 使用AAS法測定有效Ca, Mg時,浸出液需要用M3浸提劑適當稀釋1~20倍後方可測定,可根據具體情況確定稀釋倍數。
7.5.9 如果條件具備,可直接用電感耦合等離子發射光譜儀(ICP—AES)進行測定,而不需要稀釋;而且在同一浸出液中可同時測定P、K、Na、Ca、Mg、Fe、 Mn、CU、Zn、B等多種元素。
7.5.10 使用AAS法測定有效微量元素Fe、Mn、CU、Zn時,浸出液需要M3浸提劑適當稀釋後方可測定。一般測Fe時,可稀釋1~10倍;測Mn時,可稀釋2~10倍;測CU、Zn一般不需要稀釋。可根據具體情況確定稀釋倍數。

⑺ 任務鐵礦石分析方法的選擇

任務描述

在岩石礦物分析工作中,元素及其化合物的掩蔽、分離和測定都是以它們的分析化學性質為基礎的。所以,討論和研究它們的分析化學性質是極其必要的。本任務對鐵的化學性質、鐵礦石的分解方法、鐵的分析方法選用等進行了闡述。通過本任務的學習,知道鐵的化學性質,能根據礦石的特性、分析項目的要求及干擾元素的分離等情況選擇適當的分解方法,學會基於被測試樣中鐵含量的高低以及對分析結果准確度的要求不同而選用適當的分析方法,能正確填寫樣品流轉單。

任務分析

一、鐵在自然界的存在

鐵在自然界(地殼)分布很廣,也是最常用的金屬,約佔地殼質量的5.1%,居元素分布序列中的第四位,僅次於氧、硅和鋁。它的最大用途是用於煉鋼;也大量用來製造鑄鐵和煅鐵。鐵和其化合物還用作磁鐵、染料(墨水、藍曬圖紙、胭脂顏料)和磨料(紅鐵粉)。但由於鐵很容易與其他元素化合而成各種鐵礦物(化合物)存在,所以地殼中很少有天然純鐵存在。我們所說的鐵礦石是指在現代技術條件下能冶煉出鐵來而又經濟的鐵礦物。

鐵礦石從主要成分上劃分至少可以分為:赤鐵礦,主要有效成分Fe2O3;褐鐵礦,主要有效成分mFe2O3·nH2O;磁鐵礦,主要有效成分Fe3O4;菱(黃)鐵礦,主要有效成分FeCO3(Fe2S3);純鐵礦,主要有效成分單質鐵;以及上述礦藏的混生礦或與其他黑色金屬的伴生礦。鐵精礦中鐵的含量(品位)大小直接決定著鐵的產量,所以生產中特別注重鐵礦石的含量。鐵精礦中鐵含量的大小的主要測定方法有EDTA配位滴定法、重鉻酸鉀容量法。鐵礦石中全鐵含量的測定,目前國內外主要採用重鉻酸鉀容量法。

二、鐵的分析化學性質

(一)鐵的化學性質簡述

鐵(Fe),原子序數26,相對原子質量55.847,鐵的密度為7.9g/cm3,鐵有多種同素異形體,如α鐵、β鐵、γ鐵、σ鐵等。鐵是比較活潑的金屬,在金屬活動順序表裡排在氫的前面。常溫時,鐵在乾燥的空氣里不易與氧、硫、氯等非金屬單質起反應,在高溫時,則劇烈反應。鐵在氧氣中燃燒,生成Fe3O4,熾熱的鐵和水蒸氣起反應也生成Fe3O4。鐵易溶於稀的無機酸和濃鹽酸中,生成二價鐵鹽,並放出氫氣。在常溫下遇濃硫酸或濃硝酸時,表面生成一層氧化物保護膜,使鐵「鈍化」,故可用鐵製品盛裝濃硫酸或濃硝酸。鐵是一變價元素,常見價態為+2價和+3價。鐵與鹽酸、稀硫酸等反應時失去兩個電子,成為+2價。與Cl2、Br2、硝酸及熱濃硫酸反應,則被氧化成Fe3+。鐵與氧氣或水蒸氣反應生成的Fe3O4,可以看成是FeO·Fe2O3,其中有1/3的Fe為+2價,另2/3為+3價。鐵的+3價化合物較為穩定。鐵的化合物主要有兩大類:亞鐵Fe(Ⅱ)和正鐵Fe(Ⅲ)化合物,亞鐵化合物有氧化亞鐵(FeO)、氯化亞鐵(FeCl2)、硫酸亞鐵(FeSO4)、氫氧化亞鐵[Fe(OH)2]等;正鐵化合物有三氧化二鐵(Fe2O3)、三氯化鐵(FeCl3)、硫酸鐵[Fe2(SO43]、氫氧化鐵[Fe(OH)3]等。

Fe2+呈淡綠色,在鹼性溶液中易被氧化成Fe3+。Fe3+的顏色隨水解程度的增大而由黃色經橙色變到棕色。純凈的Fe3+為淡紫色。Fe2+和Fe3+均易與無機或有機配位體形成穩定的配位化合物。

(二)亞鐵的氧化還原性質

在鹼性溶液中亞鐵極易被氧化,空氣中的氧就可以將其氧化為Fe3+

4Fe(OH)2+O2+2H2O→4Fe(OH)3

與此同時,有少量的亞鐵還可發生歧化作用而形成Fe3+和Fe0。亞鐵鹽在中性溶液中被空氣中的氧氧化時,其速度遠較在酸性溶液中為快,在醇溶液中其氧化速度較在水溶液中為快;在反應過程中,pH、溫度及鹽類等條件對反應均有影響。反應結果往往有鹼式鹽生成:

4Fe2++O2+2Cl-→2FeOCl+2Fe3+

在酸性溶液中的亞鐵比在鹼性或中性溶液中穩定得多。氫離子濃度越大,其氧化反應越不容易進行。因此,要氧化酸性溶液中的亞鐵成為Fe3+,必須採用相當強的氧化劑。許多具有強氧化性的含氧酸鹽,如高錳酸鹽、重鉻酸鹽、釩酸鹽、氯酸鹽、高氯酸鹽等,均可在酸性環境中氧化亞鐵為氧化鐵。其中高錳酸鹽、重鉻酸鹽等可配成標准溶液直接滴定亞鐵。

(三)三價鐵的氧化還原性質

三價鐵是鐵的最穩定狀態。在酸性溶液中,三價鐵是緩和的氧化劑,一般情況下只有較強的還原劑才能將它還原。這些還原劑有硫化氫、硫代硫酸鈉、亞硫酸鈉、氯化亞錫、碘化鉀、亞鈦鹽、亞汞鹽、金屬鋅或鋁以及一些有機還原劑如鹽酸羥胺、抗壞血酸、硫脲等。其中硫酸亞鈦、硝酸亞汞可用來直接滴定三價鐵,氯化亞錫在鐵的容量法中的應用亦為大家所熟知。

(四)鐵的配位性質

1.鐵的無機配合物

三價鐵和亞鐵的硫酸鹽都可與硫酸鹽或硫酸銨形成復鹽。其中最重要的是(NH42SO4·FeSO4·6H2O。此復鹽的亞鐵的穩定性較大,在分析中可用它來配製亞鐵的標准溶液。三價鐵的復鹽中,鐵銨釩(NH4Fe(SO42·12H2O)也常被用來配製三價鐵的標准溶液。

鐵離子和亞鐵離子可分別與氟離子、氯離子形成配位數不同的多種配合物。分析中常利用[FeF63-配離子的形成以掩蔽Fe3+,在鹽酸溶液中Fe3+與Cl-形成的配離子為黃色,可藉以粗略判定溶液中Fe3+的存在。

鐵離子與硫氰酸根離子形成深紅色配合物。此反應可用於Fe3+的定性分析和比色法測定。

在過量磷酸根離子存在下,鐵離子可形成穩定的無色配離子,在分析中可藉此掩蔽Fe3+。此外,在用磷酸分解鐵礦石的過程中,也利用了三價鐵與磷酸根離子形成穩定配合物的反應。

2.鐵的有機配合物

EDTA與三價鐵的配位反應應用十分廣泛。亞鐵的EDTA配合物不如三價鐵的EDTA配合物穩定,因此在分析中主要應用三價鐵與EDTA的配位反應以掩蔽Fe3+或進行容量法測定。

鄰啡羅啉與亞鐵離子形成較穩定的紅色配合物,反應的靈敏度很高,可用於亞鐵的分光光度法測定。

其他的許多配位劑,如銅試劑、三乙醇胺、檸檬酸鹽、酒石酸鹽等與三價鐵離子形成配合物的反應,在分離、掩蔽中都有應用。

三、鐵礦石的分解方法

鐵礦石的分解,通常採用酸分解和鹼性熔劑熔融的方法。酸分解時,常用以下幾種方法:

(1)鹽酸分解:鐵礦石一般能為鹽酸加熱分解,含鐵的硅酸鹽難溶於鹽酸,可加少許氫氟酸或氟化銨使試樣分解完全。磁鐵礦溶解的速度很慢,可加幾滴氯化亞錫溶液,使分解速度加快。

(2)硫酸-氫氟酸分解:試樣在鉑坩堝或塑料坩堝中,加1∶1 硫酸10 滴、氫氟酸4~5mL,低溫加熱,待冒出三氧化硫白煙後,用鹽酸提取。

(3)磷酸或硫-磷混合酸分解:溶礦時需加熱至水分完全蒸發並出現三氧化硫白煙後,再加熱數分鍾。但應注意加熱時間不能過長,以防止生成焦磷酸鹽。

目前採用鹼性熔劑熔融分解試樣較為普遍。常用的熔劑有碳酸鈉、過氧化鈉、氫氧化鈉和氫氧化鉀等在銀坩堝、鎳坩堝或高鋁坩堝中熔融。用碳酸鈉直接在鉑坩堝中熔融,由於鐵礦中含大量鐵會損害坩堝,同時鉑的存在會影響鐵的測定,所以很少採用。

在實際應用中,應根據礦石的特性、分析項目的要求及干擾元素的分離等情況選擇適當的分解方法。對於含有硫化物和有機物的鐵礦石,應將試樣預先在550~600℃溫度下灼燒以除去硫及有機物,然後以鹽酸分解,並加入少量硝酸,使試樣分解完全。

四、鐵的分析方法

(一)重鉻酸鉀容量法

(1)無汞重鉻酸鉀容量法:試樣用硫酸-磷酸混酸溶解,加入鹽酸在熱沸狀態下用氯化亞錫還原大部分三價鐵。在冷溶液中以鎢酸鈉為指示劑,滴加三氯化鈦還原剩餘三價鐵,並稍過量,在二氧化碳氣體保護下,用重鉻酸鉀氧化過量三氯化鈦,以二苯胺磺酸鈉為指示劑,用重鉻酸鉀標准溶液滴定到終點。根據消耗的重鉻酸鉀標准溶液的體積計算試樣中全鐵百分含量。

(2)有汞重鉻酸鉀容量法:在酸性溶液中,用氯化亞錫將三價鐵還原為二價鐵,加入氯化汞以除去過量的氯化亞錫,以二苯胺磺酸鈉為指示劑,用重鉻酸鉀標准溶液滴定至紫色。反應方程式:

岩石礦物分析

岩石礦物分析

岩石礦物分析

經典的重鉻酸鉀法測定鐵時,採用氯化亞錫將溶液中的Fe3+還原為Fe2+。然後用氯化汞除去過量的氯化亞錫,汞鹽會造成污染,因此中國在20世紀60年代以來發展了「不用汞鹽的測鐵法」。

(二)EDTA配位滴定法

鐵礦石經濃鹽酸溶解,低溫加熱直至溶解完全後冷卻,加水將溶液稀釋至一定濃度,再加入硝酸和氨水調節溶液pH=1.8~2,以磺基水楊酸為指示劑,用EDTA標液滴定,終點由紫紅色變為亮黃色。

本法與經典法對鐵礦石中全鐵量測試結果准確度、精密度是一致的,本法可以避免因為加入HgCl2溶液而造成環境污染,有害於人的身體健康的弊病,且本法操作比經典法簡便,完全可以採用。

(三)鄰啡羅啉比色法

以鹽酸羥胺為還原劑,將三價鐵還原為二價鐵,在pH=2~9的范圍內,二價鐵與鄰啡羅啉反應生成橙紅色的配合物[Fe(Cl2H8N232+,藉此進行比色測定。其反應如下:

4FeCl3+2NH2OH·HCl→4FeCl2+N2O+6HCl+H2O

Fe2++3Cl2H8N2→[Fe(Cl2H8N232+(橙紅色)

這種反應對Fe2+很靈敏,形成的顏色至少可以保持15天不變。當溶液中有大量鈣和磷時,反應酸度應大些,以防CaHPO4·2 H2O沉澱的形成。在顯色溶液中鐵的含量在0.1~6mg/mL時符合Beer定律,波長530 nm。

(四)原子吸收光譜法

利用鐵空心陰極燈發出的鐵的特徵譜線的輻射,通過含鐵試樣所產生的原子蒸汽時,被蒸汽中鐵元素的基態原子所吸收,由輻射特徵譜線光被減弱的程度來測定試樣中鐵元素的含量。鐵的最靈敏吸收線波長為248.3nm,測定下限可達0.01mg/mL(Fe),最佳測定濃度范圍為2~20mg/mL(Fe)。

(五)X射線熒光分析法

X射線熒光光譜分析法具有分析速度快、試樣加工相對簡單、偶然誤差小及分析精度高的特點,已廣泛應用於各種原材料的分析中,並逐步應用於鐵礦石的分析中。但由於鐵礦石成分非常復雜,主成分含量較高,變化范圍大,使基體變化大,對X射線熒光分析造成不利影響,致使在用通常壓片法進行鐵礦石分析時,其准確度不如化學法高。採用玻璃熔片法對樣品進行熔融稀釋處理,可以有效地消除熒光分析中的基體效應,提高熒光分析的准確度。

X射線熒光分析法的優點之一是各元素的特徵譜線數量少。測定鐵通常選用的是Kα線,其波長為1.93Å(1Å=0.1nm)。

五、鐵礦石的分析任務及其分析方法的選擇

基於被測試樣中鐵含量的高低不同以及對分析結果准確度的要求不同,可採用的測定方法有很多。目前,岩石礦物試樣中高含量鐵的測定主要採用容量分析法。其中重鉻酸鉀容量法應用最廣泛。此外,以氧化還原反應為基礎的測定鐵的容量法還有高錳酸鉀法、鈰量法、碘量法、硝酸亞汞法以及鈦量法等。以配位反應為基礎的容量法中較常採用的是EDTA法。試樣中低含量鐵的測定,常用的有磺基水楊酸分光光度法和鄰菲羅啉分光光度法以及原子吸收分光光度法。X射線熒光分析法也已用於岩石礦物試樣中鐵的測定。

氯化亞錫還原-重鉻酸鉀容量法具有穩定、准確、簡易、快速等許多優點,但由於使用了劇毒的氯化汞,嚴重污染環境,危害人體健康。為了避免使用汞鹽,近年來常採用氯化亞錫、三氯化鈦聯合還原-重鉻酸鉀容量法。原子吸收法操作簡單、快速,結果的精密度、准確度高,但鐵的光譜線較復雜,例如,在鐵線248.3 nm附近還有248.8 nm線;為克服光譜干擾,應選擇最小的狹縫或光譜帶。

鄰菲羅啉能與某些金屬離子形成有色配合物而干擾測定。但在乙酸-乙酸銨的緩沖溶液中,不大於鐵濃度10倍的銅、鋅、鈷、鉻及小於2mg/L的鎳,不幹擾測定,當濃度再高時,可加入過量顯色劑予以消除。

技能訓練

實戰訓練

1.實訓時按每小組5~8人分成幾個小組。

2.每個小組進行角色扮演,利用所學知識並上網查詢相關資料,完成鐵礦石委託樣品從樣品驗收到派發樣品檢驗單工作。

3.填寫附錄一中表格1和表格2。

⑻ 水質檢測分析方法常用哪些分析方法

1、看:用透明度較高的玻璃杯接滿一杯水,對著光線看有無懸浮在水中的細微物質?靜置三小時,然後觀察杯底是否有沉澱物?如果有,說明水中懸浮雜質嚴重超標。

2、聞:用玻璃杯距離水龍頭盡量遠一點接一杯水,然後用鼻子聞一聞,是否有漂白粉(氯氣)的味道?如果能聞到漂白粉(氯氣)的味道,說明自來水中余氯超標。

3、嘗:熱喝白開水,有無有漂白粉(氯氣)的味道,如果能聞到漂白粉(氯氣)的味道,說明自來水中余氯超標。也必須使用凈水器進行終端處理。

4、觀:用自來水泡茶,隔夜後觀察茶水是否變黑?如果茶水變黑,說明自來水中含鐵、錳嚴重超標,應選用裝有除鐵、錳濾芯的凈水器進行終端處理。

5、品:品嘗白開水,口感有無澀澀的感覺?如有,說明水的硬度過高。

6、查:檢查家裡的熱水器、開水壺,內壁有無結一層黃垢?如果有,也說明水的硬度過高,(鈣、鎂鹽含量過高),應盡早使用軟化處理!注意:硬度過高的水很容易造成熱水器管道結垢,因熱交換不良而爆管;長期飲用硬度過高的水容易使人得各種結石。

(8)科文特亞的鹼鋅分析方法擴展閱讀:

主要意義:

水資源是人類社會發展不可或缺並且不可替代的重要資源之一,對社會經濟的發展以及人們的日常生活與生產都發揮著保障的作用。

當前人類社會中的水資源危機問題已經直接對經濟的發展起到了限制的作用並且影響著人類的正常生活,所以正視水資源危機以及重視水資源問題具有緊迫性與必要性。而在對水資源質量的調查與把控中,水質分析發揮著重要的作用。

飲用水主要考慮對人體健康的影響,其水質標准除有物理指標、化學指標外,還有微生物指標;對工業用水則考慮是否影響產品質量或易於損害容器及管道。水資源是人類社會發展不可或缺並且不可替代的重要資源之一,對社會經濟的發展以及人們的日常生活與生產都發揮著保障的作用。

⑼ 任務鈷礦石分析方法的選擇

任務描述

自然界已知含鈷礦物有100多種,但具有工業價值的礦物僅十餘種。鈷在地殼中的含量約23×10-6,多伴生於鎳、銅、鐵、鉛、鋅等礦床中。本任務對鈷的化學性質、鈷礦石的分解方法、鈷的分析方法選用等進行了闡述。通過本任務的學習,知道鈷的化學性質,能根據礦石的特性、分析項目的要求及干擾元素的分離等情況選擇適當的分解方法,學會基於被測試樣中鈷含量的高低不同以及對分析結果准確度的要求不同而選用適當的方法,能正確填寫樣品流轉單。

任務分析

一、鈷的性質

1.物理性質

鈷(Co),原子序數是27,相對原子質量58.93,密度8.9g/cm3,熔點1495℃,沸點2930℃,具有光澤的鋼灰色金屬,比較硬而脆。鈷是鐵磁性的,在硬度、抗拉強度、機械加工性能、熱力學性質、電化學行為方面,與鐵和鎳相類似,屬於鐵系元素。加熱到1150℃時磁性消失。

2.化學性質

鈷的化合價為+2價和+3價。在常溫下不和水作用,在潮濕的空氣中也很穩定。一般情況下與氧、硫、氯等非金屬不起作用,但在高溫下發生氧化作用,與氧、硫、氯、溴等發生劇烈反應,生成相應化合物。在空氣中加熱至300℃以上時氧化生成CoO,在白熱時燃燒成Co3O4。氫還原法製成的細金屬鈷粉在空氣中能自燃生成氧化鈷。

由電極電勢看出,鈷是中等活潑的金屬。其化學性質與鐵、鎳相似。

鈷可溶於稀酸中,在發煙硝酸中因生成一層氧化膜而被鈍化,在濃硝酸中反應激烈,在鹽酸和硫酸中反應很緩慢,鈷會緩慢地被氫氟酸、氨水和氫氧化鈉侵蝕。鈷在鹼溶液中比鐵穩定,鈷是兩性金屬。

二、鈷元素在地殼中的分布、賦存狀態及其鈷礦石的分類

鈷在地殼中含量為23×10-6,很少有較大的鈷礦床,明顯比鐵少得多,而且鈷和鐵的熔點不相上下,因此註定它比鐵發現得晚。1735 年,瑞典的布朗特在煅燒鈷礦時得到鈷。

Co(Ⅱ)的化合物有氧化鈷、氫氧化鈷、氯化鈷、硫酸鈷、碳酸鈷、草酸鈷等;Co(Ⅲ)的化合物有氧化高鈷;鈷的配合物有氨配合物([Co(NH363+、氰配合物[Co(CN)64-、硫氰配合物[Co(SCN)42-、羰基配合物[Co(CO)4-、硝基[Co(NO342-或亞硝基配合物[Co(NO263-

鈷在礦物中與砷和硫結合,主要礦物有硫鈷礦Co3S4,含鈷57.99%;砷鈷礦CoAS2,含鈷28.20%;輝砷鈷礦CoAsS,含鈷35.50%;硫銅鈷礦CuCo2S4,含鈷38.06%;鈷黃鐵礦(Fe,Co )S2,含鈷32.94%;方鈷礦 CoAS3,含鈷20.77%;鈷土礦 CoMn2O5· 4H2O,含鈷 18.37%;鈷華 Co(AsO43·8H2O,含鈷 9.51%;菱鈷礦 CoCO3,含鈷49.55%;赤礬CoSO4,含鈷20.97%。

單獨的鈷礦床一般為砷化鈷、硫化鈷和鈷土礦三種,前兩種的工業要求大體相同。硫化礦(包括砷化礦)中的鈷邊界品位達0.02%、工業品位為0.03%~0.06%;鈷土礦中的鈷邊界品位為0.30%,工業品位為0.50%。

與鈷共存的元素主要為鐵和鎳。礦石中的銅、鎳作為伴生元素回收。對於伴生的其他元素,也應查明含量及賦存狀態以便考慮能否綜合利用。

三、鈷礦石的分解方法

鈷礦試樣一般可用鹽酸和硝酸分解,必要時可用焦硫酸鉀和碳酸鈉熔融。如試樣為硅酸鹽時,可加氟化物或氫氟酸助溶。不被氫氟酸分解的含鈷礦石,可以用過氧化鈉或氫氧化鈉-硝酸鉀熔融。

砷鈷礦試樣需要用硝酸和硫酸加熱到冒煙使其分解。當試樣中含有大量硫或砷時,宜先灼燒除去大部分的硫或砷,然後再用鹽酸或王水分解。

四、鈷的分離富集方法

鈷沒有簡便而選擇性好的分離方法。目前常用的分離方法主要有氨水沉澱法、1-亞硝基-2-萘酚沉澱法、銅鐵試劑沉澱法、萃取分離法、離子交換法等。

氨水沉澱法是在銨鹽存在下,用氨水將溶液 pH 調至8~9,Hg2+、Be2+、Fe3+、Al3+、Cr(Ⅲ)、Bi3+、Sb3+、Sn4+、Ti4+、Zr4+、Hf4+、Th4+、Mn4+、Nb5+、Ta5+、U(Ⅵ)及稀土離子定量沉澱,Mn2+、Fe2+、Pb2+部分沉澱,Ca2+、Sr2+、Ba2+、Mg2+、Co2+、Ag、Cu2+、Cd2+、Ni2+、Zn2+留於溶液中。

在稀鹽酸溶液中,用1-亞硝基-2-萘酚沉澱鈷,是較完全的,但不能用作分離方法。因鐵、銅、鉍、銀、鉻、鋯、鈦、鉬、釩、錫和硝酸等都有干擾。鋁、鈹、鉛、鎘、錳、鎳、汞、砷、銻、鋅、鈣、鎂和磷則不幹擾。用氧化鋅可以沉澱鋁、鈦、釩、鉻、鐵、砷、鋯、錫、鎢、鈾、磷和大部分銅、鋁、硅。所以用1 -亞硝基-2 -萘酚沉澱鈷之前,常用氧化鋅分離干擾元素。但用氧化鋅沉澱分離干擾元素,常須沉澱二次或三次,這樣就使1-亞硝基-2-萘酚沉澱鈷的方法失去優越性。

銅鐵試劑在酸性溶液中,定量沉澱Fe、Ti、Zr、V(Ⅴ)、U(Ⅳ)、Sn(Ⅳ)、Nb和Ta,可與Al、Cr、Mn、Ni、Co、Zn、Mg和P分離。銅鐵試劑沉澱可用四氯化碳萃取除去。因銅鐵試劑不影響1-亞硝基-2-萘酚沉澱鈷,故銅鐵試劑分離可與1-亞硝基-2-萘酚沉澱鈷結合應用。

用亞硝酸鉀使鈷成亞硝酸鈷鉀沉澱,是一較實用的分離鈷的方法。雖然沉澱的溶解度較大,與大量鎳的分離不完全,沉澱不能作為稱量形式等都是缺點,但此方法選擇性較高,能使幾毫克鈷與大量鐵、銅、鎳,鋁、銻、鉍、鎘、鉻、錳、鋁、鈦、錫、鎢、鈮、鉭、釩、鋅和鋯等元素分離。砷的干擾可預先揮發除去。鈣、鍶、鋇、鉛可以硫酸鹽形式除去。KNO2沉澱法是在乙酸溶液中,鈷與KNO2形成亞硝酸鈷鉀(K3[Co(NO26] )沉澱,在酒石酸存在下,Ni、Cr、Al、Fe、Ti、Zr,Nb、Ta、W、Mo及硫化氫組元素不幹擾,Ca、Sr、Ba、Pb干擾此法自Ni中分離的Co,可以硫酸鹽形式沉澱除去。沉澱並不純凈,可能夾帶有W、Ni、Fe等元素。

萃取分離鈷的方法很多,但多數選擇性不高。

用丙酮∶水∶鹽酸=34∶4∶2(體積之比)混合溶液為展開劑,用紙色譜可使鈷與鐵、鈦、銅、錳、鋅、鉻、鎳、釩和鈾等元素分離。此方法已應用於礦石分析。

1-亞硝基-2-萘酚萃取法是在pH=3~7介質中,鈷與試劑形成橙紅色配合物,用苯定量萃取,大量Fe3+用氟化物掩蔽,加入檸檬酸鹽可防止其他金屬離子水解。在配合物形成後,再提高酸度,Ni、Cu、Cr、Fe等配合物立即被破壞,而鈷配合物仍穩定,從而提高萃取的選擇性。方法可用於痕量鈷的萃取分離。鈷的硫氰酸鹽二安替比林配合物可被MIBK定量萃取。Co(Ⅱ)-PAN的配合物也能被三氯甲烷萃取。

介質為HCl(3+1)的試液通過強鹼性陰離子交換柱,Cu、Zn、Fe的氯陰離子被吸附於柱上,Ni、Mn、Cr流出。然後用HCl(1+2)洗脫鈷,Cu、Zn、Fe仍留於柱上。

五、鈷的測定方法

目前仍在用的測定鈷的方法有容量法、極譜法、光度法、原子吸收光譜法和等離子體發射光譜法等。

礦石中鈷的含量一般較低,經常應用比色法進行測定。鈷的比色法很多,最常用的有亞硝基-R-鹽(亞硝基紅鹽)和2-亞硝基-1-萘酚萃取比色法。其他有硫氰酸鹽法、5-Cl-PADAB光度法和PAR比色法、過氧化氫-EDTA比色法等。

亞硝基-R-鹽(亞硝基紅鹽)比色法的優點是在一般情況下不需分離鐵、銅、鎳等元素而直接進行測定;簡便、快速,准確度也較高。採用差示比色,可測定高含量鈷。2-亞硝基-1-萘酚法由於經過萃取,有較高的靈敏度,適用於銅鎳礦中鈷的測定。硫氰酸鹽法由於銅和鐵的干擾,需要掩蔽或分離,目前應用較少。過氧化氫-EDTA比色法是在pH=8的氨性溶液中,用過氧化氫將鈷氧化至三價與EDTA生成紫紅色配合物,藉以比色測定高含量鈷。10mg Fe,12mg Mn,5mg Cu或Ni,1gmgSO4及2g NaCl均不幹擾鈷的測定。

用三氯甲烷萃取鈷與二安替比林甲烷-硫氰酸鹽形成的三元配合物,使鈷與大量銅、鎳分離後,再用PAR比色法測定鈷。此法靈敏度較高,適用於組成復雜的試樣中或大量銅、鎳存在下微克量鈷的測定。

對高含量鈷的測定宜採用容量法。容量法有EDTA法、電位滴定法和碘量法。EDTA法由於銅、鎳、鐵、鋁、鋅等共存離子的干擾,須用亞硝酸鈷鉀或其他方法將鈷與干擾元素分離後再進行滴定。

1.亞硝基-R-鹽(亞硝基紅鹽)比色法

在pH=5.5~7.0的醋酸鹽緩沖溶液中,鈷與亞硝基-R-鹽(1-亞硝基-2萘酚-3,6-二磺酸鈉)形成可溶性紅色配合物。

2.電位滴定法

在氨性溶液中,加入一定量的鐵氰化鉀,將Co(Ⅱ)氧化為Co(Ⅲ),過量的鐵氰化鉀用硫酸鈷溶液滴定,按電位法確定終點。其反應式如下:

岩石礦物分析

本法適用於含1.0% 以上鈷的測定。

3.EDTA容量法

鈷與EDTA形成中等穩定的配合物(lgK=16.3)。能在pH為4~10范圍內應用不同的指示劑進行鈷的配位滴定。

鐵、鋁、錳、鎳、銅、鉛、鋅等金屬離子干擾測定,因此必須將它們除去或掩蔽。對於只含鐵、銅、鈷等較單純的試樣,可用氟化物掩蔽鐵、硫脲掩蔽銅而直接進行測定。多金屬礦則應在乙酸介質中,用亞硝酸鉀沉澱鈷與其他干擾元素分離後,再進行測定。

常用的滴定方法有:以PAN [1-(2-吡啶偶氮)-2-萘酚]為指示劑,用銅鹽溶液回滴;以二甲酚橙為指示劑,用EDTA標准溶液滴定被鈷所置換出的EDTA-鋅中的鋅。

使用PAN作指示劑銅鹽回滴法時,所加的EDTA量可根據鈷量而稍微過量,這樣終點更加明顯。在常溫下反應較慢,應在70℃至近沸狀態下進行滴定。加入有機溶劑(甲醇、異丙醇等),可使終點顏色變化敏銳。

以二甲酚橙為指示劑,不能用EDTA標准溶液直接滴定。因為鐵、鋁、銅、鈷和鎳等能封閉二甲酚橙,雖然用三乙醇胺能掩蔽痕量的鐵、鋁,用鄰啡羅啉能抑制銅、鈷對二甲酚橙的封閉作用,但還不夠理想,故改用置換滴定法,以克服這一缺點。

本法適用於含0.5% 以上鈷的測定。

4.原子吸收光譜法

每毫升溶液中,含10mg鐵,9mg鎳,40mg錫,3mg銀,0.8mg鋁,0.64mg釩、鋁、鈦,0.6mg鉻,6.4mg 鈉,0.4mg 鉀,0.2mg 銅,0.16mg 錳,0.1mg 砷、銻,40μg 鎂,80μg鍶、磷,80μg 鎢,50μg 鉛,48μg 鋇,40μg 鋅、鎘、鉍、鈣,23μg 鈹均不幹擾測定。二氧化硅含量超過40μg/mL干擾測定,當加入高氯酸冒煙處理後,含量達0.8mg/mL亦不幹擾測定。小於15%(體積分數)硝酸,小於5%(體積分數)鹽酸、硫酸不影響測定,高氯酸含量達16%(體積分數)亦不影響測定。磷酸嚴重干擾測定。

方法靈敏度為0.085μg/mL(1% 吸收),最佳測定范圍為2~10μg/mL。

本法適用於鎳礦及鐵礦中鈷的測定。

5.碘量法

Co(Ⅱ)在含有硝酸銨的氨性溶液(pH為9~10)中能被碘氧化成Co(Ⅲ),並與碘生成穩定的硝酸-碘五氨絡鈷的綠色沉澱。過量的碘以澱粉作指示劑,用亞砷酸鈉標准溶液滴定。其反應式如下;

岩石礦物分析

岩石礦物分析

鐵、鋁在氨性溶液中能生成氫氧化物沉澱且易吸附鈷,同時鐵的氫氧化物又影響終點的判斷,加入檸檬酸銨-焦磷酸鈉混合溶液可消除100mg以下鐵、鋁的干擾。2mg錳的影響測定,銅、鎳、鎘、鋅在100mg以下不幹擾。

本法適用於5% 以上鈷的測定。

6.ICP-AES法

ICP-AES法(等離子體發射光譜法)可以同時測定樣品中多元素的含量。當氬氣通過等離子體火炬時,經射頻發生器所產生的交變電磁場使其電離、加速並與其他氬原子碰撞。這種連鎖反應使更多的氬原子電離形成原子、離子、電子的粒子混合氣體——等離子體。等離子體火炬可達6000~8000 K的高溫。過濾或消解處理過的樣品經進樣器中的霧化器被霧化並由氬載氣帶入等離子體火炬中,氣化的樣品分子在等離子體火炬的高溫下被原子化、電離、激發。不同元素的原子在激發或電離時發射出特徵光譜,所以等離子體發射光譜可用來定性樣品中存在的元素。特徵光譜的強弱與樣品中原子濃度有關與標准溶液進行比較,即可定量測定樣品中各元素的含量。

含鈷礦樣經過鹽酸、硝酸分解後,在選定的測量條件下以ICP-AES測定溶液中的Cu、Pb、Zn、Co、Ni等元素的含量。

本法適用於0.10%~20.00% 之間鈷的測定。

六、鈷礦石的分析任務及其分析方法的選擇

在生產實踐中,因不同的鈷礦產品所含雜質元素的組成不同,考慮到其對生產工藝的影響,在對鈷礦樣進行檢驗時,對雜質元素的檢測也要選擇合適的方法進行測定。

對於主品位鈷的測定,如果樣品中鈷含量低於1.00% 以下,一般採用光度法測定,現在通常使用的方法是亞硝基-R-鹽光度法,該方法穩定可靠,樣品經過處理以後可以直接進行測定。鈷含量超過1.00% 時,將樣品適當處理以後,可以使用電位滴定法測定,該方法特別適用於含鈷量比較高的礦物。

鈷礦石中的常見鈣、鎂、鉛、鋅、鎘、銅等元素含量低時可以採用原子吸收法進行測定,含量高時可以使用EDTA滴定法測定;高含量銅亦可用碘量法進行氧化還原滴定;鐵可以用磺基水楊酸光度法或重鉻酸鉀容量法進行測定;鋁一般用鉻天青光度法測定;二氧化硅用硅鉬藍光度法測定;鎳用丁二酮肟光度法測定;磷、砷可用鉬藍光度法測定。其他元素一般在礦物中含量不高,對生產的影響不大,在作為原料檢測時可以酌情考慮是否需要檢測。

技能訓練

實戰訓練

1.學生實訓時按每組5~8人分成幾個小組。

2.每個小組進行角色扮演,利用所學知識並上網查詢相關資料,完成鈷礦石委託樣品從樣品驗收到派發樣品檢驗單工作。

3.填寫附錄一中質量表格1、表格2。

⑽ 亞硝酸鹽含量方法

GB/T 5009.33-2003
你去查這個標准就可以了。如果你還不滿意的話,我就去給你查。還請你給我100分吧,我很需要。
GB/T 5009.33—1996
中華人民共和國國家標准 食品中亞硝酸鹽與硝酸鹽的測定方法 Method for determination of nitrite and nitrate in foods GB/T 5009.33—1996 1 主題內容與適用范圍 本標准規定了食品中亞硝酸鹽和硝酸鹽的測定方法。 本標准適用於食品中亞硝酸鹽和硝酸鹽的測定。亞硝酸酸鹽方法檢出限為1 mg/kg,硝酸鹽方法檢出限為1.4 mg/kg。 第一篇 格里斯試劑比色法(第一法) (一)亞硝酸鹽測定 2 原理 樣品經沉澱蛋白質、除去脂肪後,在弱酸條件下亞硝酸鹽與對氨基苯磺酸重氮化後,再與N-1-萘基乙二胺偶合形成紫紅色染料,與標准比較定量。 3 試劑 實驗用水為蒸餾水,試劑不加說明者,均勻分析純試劑。 3.1 氯化銨緩沖液:1 L容量瓶中加入500 mL水,准確加入20.0 mL鹽酸,振盪混勻,准確加入50 mL氫氧化銨,用水稀釋至刻度。必要時用稀鹽酸和稀氫氧化銨調試至pH9.6~9.7。 3.2 硫酸鋅溶液(0.42 mol/L):稱取120 g硫酸鋅(ZnSO4·7H2O),用水溶解,並稀釋至1 000 mL。 3.3 氫氧化鈉溶液(20 g/L):稱取20 g氫氧化鈉用水溶解,稀釋至1 L。 3.4 對氨基苯磺酸溶液:稱取10 g對氨基苯磺酸,溶於700 mL水和300 mL冰乙酸中,置棕色瓶中混勻,室溫保存。 3.5 N-1-萘基乙二胺溶液(1 g/L):稱取0.1 g N-1-萘基乙二胺,加60%乙酸溶解並稀釋至100 mL,混勻後,置棕色瓶中,在冰箱中保存,一周內穩定。 3.6 顯色劑:臨用前將N-1-萘基乙二胺溶液(1 g/L)和對氨基苯磺酸溶液等體積混合。 3.7 亞硝酸鈉標准溶液:准確稱取250.0 mg於硅膠乾燥器中乾燥24 h的亞硝酸鈉,加水溶解移入500 mL容量瓶中,加100 mL氯化銨緩沖液,加水稀釋至刻度,混勻,在4℃避光保存。此溶液每毫升相當於500 μg的亞硝酸鈉。 3.8 亞硝酸鈉標准使用液:臨用前,吸取亞硝酸鈉標准溶液1.00 mL,置於100 mL容量瓶中,加水稀釋至刻度,此溶液每毫升相當於5.0 μg亞硝酸鈉。 4 儀器 4.1 小型粉碎機。 4.2 分光光度計。 5 操作方法 5.1 樣品處理 稱取約10.00 g(糧食取5 g)經絞碎混勻樣品,置於打碎機中,加70 mL
中華人民共和國衛生部 1996—06—19 批准 1996—09—01 實施
GB/T 5009.33—1996
水和12 mL氫氧化鈉溶液(20 g/L),混勻,用氫氧化鈉溶液(20 g/L)調樣品pH=8,定量轉移至200 mL容量瓶中加10 mL硫酸鋅溶液,混勻,如不產生白色沉澱,再補加2~5 mL氫氧化鈉,混勻。置60℃水浴中加熱10 min,取出後冷至室溫,加水至刻度,混勻。放置0.5 h,用濾紙過濾,棄去初濾液20 mL,收集濾液備用。 5.2 測定 5.2.1 亞硝酸鹽標准曲線的制備:吸取0,0.5,1.0,2.0,3.0,4.0.5.0 mL亞硝酸鈉標准使用液(相當於0,2.5,5,10,15,20,25 μg亞硝酸鈉),分別置於25 mL帶塞比色管中。於標准管中分別加入4.5 mL氯化銨緩沖液,加2.5 mL60%乙酸後立即加入5.0 mL顯色劑,加水至刻度,混勻,在暗處靜置25 min用1 cm比色杯(靈敏度低時可換2 cm比色杯),以零管調節零點,於波長550 nm處測吸光度,繪制標准曲線。 低含量樣品以制備低含量標准曲線計算,標准系列為:吸取0,0.4,0.8,1.2,1.6,2.0 mL亞硝酸鈉標准使用液(相當於0,2,4,6,8,10 μg亞硝酸鈉)。 5.2.2 樣品測定:吸取10.0 mL上述濾液(5.1)於25 mL帶塞比色管中,自5.2.1「於標准管中分別加入4.5 mL氯化銨緩沖液」起依法操作。同時做試劑空白。 6 計算 1000100012121×××=VVmmX……………………………………(1) 式中:X1——樣品中亞硝酸鹽的含量,mg/kg; m1——樣品質量,g; m2——測定用樣液中亞硝酸鹽的質量,μg; V1——樣品處理液總體積,mL; V2——測定用樣液體積,mL。 結果的表述:報告算術均值的二位有效數。 7 允許差 相對相差≤10%。 (二) 硝酸鹽測定 8 原理 樣品經沉澱蛋白質、除去脂肪後,溶液通過鎘柱,或加入鎘粉,使其中的硝酸根離子還原成亞硝酸根離子,在弱酸性條件下,亞硝酸根與氨基苯磺酸重氮化後,再與N-1萘基乙二胺偶合形成紅色染料,測得亞硝酸鹽總量,由總量減去亞硝酸鹽含量即得硝酸鹽含量。 9 試劑 9.1 氯化銨緩沖溶液(pH9.6~9.7):同3.1。 9.2 硫酸鎘溶液(0.14 mol/L):稱取37 g硫酸鎘(CdSO4·8H2O),用水溶解,定容至1 L。 9.3 鹽酸溶液(0.1 mol/L):吸取8.4 mL鹽酸,用水稀釋至1 L。
中華人民共和國衛生部 1996—06—19 批准 1996—09—01 實施
GB/T 5009.33—1996
9.4 硝酸鈉標准溶液:准確稱取500.0 mg於110~120℃乾燥恆重的硝酸鈉,加水溶解,移於500 mL容量瓶中,加50 mL氯化銨緩沖液,用水稀釋至刻度,混勻,在4℃冰箱中避光保存。此溶液每毫升相當於1 mg硝酸鈉。 9.5 硝酸鈉標准使用液:臨用時吸取硝酸鈉標准溶液1.0 mL,置於100 mL容量瓶中,加水稀釋至刻度,混勻,臨用時現配。此溶液每毫升相當於10 μg硝酸鈉。 9.6 亞硝酸鈉標准使用液同3.8。 9.7 鎘柱(鎘粉)。 9.7.1 海綿狀鎘粉的制備:於500 mL硫酸鎘溶液中,投入足夠的鋅棒經3~4 h,當其中的鎘全部被鋅置換後,用玻璃棒輕輕刮下,取出殘余鋅棒,使鎘沉底,傾去上層清液,以水用傾斜法多次洗滌,然後移入粉碎機中,加500 mL水,搗碎約2 s,用水將金屬細粒洗至標准篩上,取20~40目之間的部分,置試劑瓶中,用水封蓋保存,備用。 9.7.2 鎘柱還原效率的測定:取25 ml酸式滴定管數支,向柱底壓入1 cm高的玻璃棉作墊,上置一小漏斗,將新配製的鎘粉帶水加入柱內,邊裝邊輕輕敲擊柱,排除柱內空氣,加鎘粉至8~10 cm高,上面用1 cm高的玻璃棉覆蓋,上置一貯液漏斗。 當鎘柱填裝好後,先用25 mL鹽酸(0.1 mol/L)洗滌,再以水洗兩次,每次25 mL,調節柱流速至3~5 mL/min。鎘柱不用時用水封蓋,隨時都要保持水平面在鎘層之上,不得使鎘層夾有氣泡。 鎘柱每次使用完畢後,應先以25 mL鹽酸(0.1 mol/L)洗滌,再以水洗兩次,每次25 mL,最後用水覆蓋鎘柱。 柱先加25 mL氯化銨緩沖液,至液面接近海綿鎘時,吸取2.0 mL硝酸鈉標准使用液(10 μg/mL),經柱還原,控制流速3~5 mL/min,用50 mL容量瓶接收。加入5 mL氯化銨緩沖溶液,液面接近海綿鎘時,加入15 mL水洗柱,還原液和洗液一並流入50 mL容量瓶中。加5 mL60%乙酸,10 mL顯色劑,加水稀釋至刻度,混勻,暗處放置25 min。用1 cm比色杯,以標准零管調節零點,於波長550 nm處測吸光度,根據亞硝酸鹽標准曲線計算還原效率(如鎘柱還原率小於95%,應經鹽酸浸泡活化處理)。 9.7.3 鎘粉還原效率的測定:鎘粉使用前,經鹽酸浸泡活化處理,再以水洗兩次,用水浸沒待用。用牛角勺將鎘粉加入25 mL帶塞刻度試管中,至5 mL刻度;用少量水封住。吸取2.0 mL硝酸鈉標准使用液加入5 mL氯化銨緩沖液。蓋上試管塞,振搖2 min,靜止5 min,用漏斗頸部塞有少量脫脂棉的小漏斗過濾,濾液定量收集於50 mL容量瓶中,用15 mL水少量多次地洗滌鎘粉,洗液與濾液合並。加5 mL乙酸(60%)後,立即加10 mL顯色劑,加水稀釋至刻度,混勻,暗處置25 min。用1 cm比色杯,以標准零管調節零點,於550 nm波長處測吸光度,根據亞硝酸鹽標准曲線計算還原效率。 9.7.4 計算 10020232.132××=mX……………………………………(2) 式中:X2——還原效率,%; 20——硝酸鹽的質量,μg; m3——20 μg硝酸鹽還原後測得亞硝酸鹽的質量,μg;
中華人民共和國衛生部 1996—06—19 批准 1996—09—01 實施
GB/T 5009.33—1996
1.232——亞硝酸鹽換算成硝酸鹽的系數。 10 分析步驟 10.1 樣品處理 同5.1。 10.2 測定(用鎘柱法或鎘粉法還原硝酸鹽為亞硝酸鹽) 10.2.1 甲法(鎘柱法):經活化的鎘柱先加25 mL氯化銨緩沖液,至液面接近海綿鎘時,准確吸取5.1的樣品濾液10.0 mL,加入鎘柱還原。以下按9.7.2自「控制流速3~5 mL/min」起依法操作。 10.2.2 乙法(鎘粉法):准確吸取5.1的樣品濾液10.0 mL,置於盛有高度5 mL鎘粉的25 mL帶塞刻度試管中。自「加入5 mL氯化銨緩沖液…」按9.7.3依法操作。 註:蔬菜、腌菜類食品中硝酸鹽含量較高,可根據樣品中硝酸鹽的實際含量,將樣品溶液稀釋至適當濃度。 11 計算 1000)/(1000232.1)(344653××××−=VVmmmX……………………………………(3) 式中:X3——樣品中硝酸鹽的含量,mg/kg; m4——樣品的質量,g; m5——經鎘粉還原後測得亞硝酸鈉的質量,μg; m6——直接測得亞硝酸鹽的質量,μg; 1.232——亞硝酸鈉換算成硝酸鈉的系數。 V3——樣品處理液體積,mL; V4——測定用樣液體積,mL。 結果的表述:報告算術平均值的兩位有效數。 12 允許差 相對相差≤10%。 第二篇 示波極譜法(亞硝酸鹽測定)(第二法) 13 原理 樣品經沉澱蛋白質、除去脂肪後,在弱酸性的條件下亞硝酸鹽與對氨基苯磺酸重氮化後,在弱鹼性條件下再與8-羥基喹啉偶合形成橙色染料,該偶氮染料在汞電極上還原產生電流,電流與亞硝酸鹽的濃度呈線性關系,可與標准曲線比較定量。 14 試劑 14.1 亞鐵氰化鉀溶液:稱取106.0 g亞鐵氰化鉀[K4Fe(CN)6·3H2O],用水溶解,並稀釋至1 000 mL。 14.2 乙酸鋅溶液:稱取220.0 g乙酸鋅[Zn(CH3COO)2·2H2O],加30 mL冰乙酸溶於水,並稀釋至1 000 mL。 14.3 飽和硼砂溶液:稱取5.0 g硼酸鈉(Na2B4O7·10H2O),溶於100 mL熱水中,冷卻後備用。 14.4 對氨基苯磺酸溶液(8 g/L):稱取2 g對氨基苯磺酸,用熱水溶液,再加25 mL鹽酸(1.0 mol/L),移至250 mL容量瓶稀釋至刻度。
中華人民共和國衛生部 1996—06—19 批准 1996—09—01 實施
GB/T 5009.33—1996
14.5 8-羥基喹啉溶液(1 g/L):稱取0.250 g 8-羥基喹啉,加4 mL鹽酸(0.1 mol/L)和少量水溶解,移至250 mL容量瓶稀釋至刻度。 14.6 EDTA溶液(0.10 mol/L):稱取3.722 gEDTA(C10H14N2O8Na·2H2O)加水30 mL溶解,轉入100 mL容量瓶中用水稀釋至刻度。 14.7 氨水(5%):吸取28%的濃氨水5.00 mL於100 mL容量瓶中,加水稀釋至刻度。 14.8 亞硝酸鈉標准溶液:准確稱取0.100 0 g亞硝酸鈉於硅膠乾燥器中24 h,加水溶解移入500 mL容量瓶中,並稀釋至刻度,此溶液每毫升相當於200 μg亞硝酸鈉。 14.9 亞硝酸鈉標准使用液:准確稱取亞硝酸鈉標准溶液5.00 mL於200 mL容量瓶中,加水稀釋至刻度,此溶液每毫升相當於5μg亞硝酸鈉。再取10.00 mL該稀釋液於100 mL容量瓶中,加水稀釋至刻度,此溶液每毫升相當於0.5 μg的亞硝酸鈉。 15 儀器 15.1 小型絞肉機。 15.2 JP-2A或JP-1A示波極譜儀。 16 操作方法 16.1 樣品處理 稱取5.000 g經絞碎混勻的樣品(午餐肉,火腿腸可稱10.00~20.00 g),置於50 mL燒杯中,加12.5 mL硼砂飽和液,攪拌均勻,以70℃的水300 mL將樣品洗入500 mL容量瓶中,於沸水溶中加熱15 min取出後冷卻至室溫,然後一面轉動,一面加入5 mL亞鐵氰化鉀溶液,搖勻,再加入5 mL乙酸鋅溶液,以沉澱蛋白質。加水至刻度,搖勻,放置30 min,除去上層脂肪,清液用濾紙過濾,棄去初濾液50 mL,濾液備用。 16.2 測定 吸取3 mL上述濾液於10 mL容量瓶(或比色管)中,另取0,0.50,1.00,1.50,2.00,2.50,3.00 mL亞硝酸鈉標准溶液(相當於0,0.25,0.50,0.75,1.00,1.25,1.50 μg亞硝酸鈉)於10 mL容量瓶(或比色管)中。於標准與樣品管中分別加入0.20 mL EDTA溶液(0.10 mol/L),1.50 mL對氨基苯磺酸溶液(8 g/L),混勻,靜止3~4 min後各加入1.00 mL8-羥基喹啉溶液(1 g/L)和0.5 mL氨水(5%),用水稀釋至刻度,混勻,靜止10~15 min,將試液全部轉入電解池中(10 mL小燒杯)。在示波極譜儀上採用三電極體系進行測定(滴汞電極為工作電極,飽和甘汞電極為參比電極,鉑電極為鋪助電極)。 測定參考條件: 原點電位調節在-0.2 V; 倍率為0.1(可以根據試樣中亞硝酸鹽含量多少選擇合適的倍率,含量高,倍率高,倍率選擇在0.1以上;反之,倍率選擇在0.1以下); 電極開頭拔至三電極、導數檔; 測量開關拔至陰極。 將三電極插入電解池中,每隔7 s儀器自行掃描一次,在熒光屏上記錄-0.56 V左右(允許電位波動10~20 mV)的極譜波高,繪制標准曲線比較。 17 計算 10001000)/(100056784××××=VVmmX……………………………(4)
中華人民共和國衛生部 1996—06—19 批准 1996—09—01 實施
GB/T 5009.33—1996
式中:X4——樣品中亞硝酸鹽的含量,g/kg; m8——測定用樣液中亞硝酸鹽的質量,μg; V5——樣品溶液的總體積,mL; V6——測定用樣液的體積,mL; m7——樣品質量,g。 結果表述:報告算術平均值二位有效數。 18 允許差 相對相差≤10%。 附加說明: 本標准由衛生部衛生監督司提出。 本標准第一法由衛生部食品衛生監督檢驗所、河南省食品衛生監督檢驗所、吉林省衛生防疫站、青島醫學院負責起草;第二法由華中師范大學、湖北省食品衛生監督檢驗所、武漢同濟醫學大學負責起草。 本標准由衛生部委託技術歸口單位衛生部食品衛生監督檢驗所負責解釋。 中華人民共和國衛生部 1996—06—19 批准 1996—09—01 實施

閱讀全文

與科文特亞的鹼鋅分析方法相關的資料

熱點內容
馬原中歸納的方法有什麼局限性 瀏覽:508
燈具遙控安裝方法 瀏覽:984
在家地震預警有哪些方法論 瀏覽:398
氣缸圓柱度的檢測方法 瀏覽:213
東風制動燈故障原因和解決方法 瀏覽:309
簡諧運動研究方法 瀏覽:122
幼兒異物吸入的搶救方法有哪些 瀏覽:210
開衫毛衣尺寸的經典計算方法 瀏覽:356
廣電有線連接方法 瀏覽:826
局解血管的檢查常用方法 瀏覽:986
瑜伽的技巧和方法 瀏覽:833
寫出五種植物的傳播方法 瀏覽:96
治療脾氣差的最佳方法 瀏覽:814
花卉滿天星的種植方法 瀏覽:965
風控未通檢測方法 瀏覽:767
根管治療術的步驟和方法 瀏覽:179
去腳臭的簡單的方法 瀏覽:933
二年級語文教學方法和教學手段 瀏覽:67
學前教育研究方法課題 瀏覽:866
瑜伽胳膊鍛煉方法 瀏覽:124