1. 聚類分析法
聚類分析,亦稱群分析或點分析,是研究多要素事物分類問題的數量方法。其基本原理是,根據樣本自身的屬性,用數學方法按照某些相似性或差異性指標,定量地確定樣本之間的親疏關系,並按親疏關系的程度對樣本進行聚類(徐建華,1994)。
聚類分析方法,應用在地下水中,是在各種指標和質量級別標准約束條件下,通過樣品的各項指標監測值綜合聚類,以判別地下水質量的級別。常見的聚類分析方法有系統聚類法、模糊聚類法和灰色聚類法等。
(一)系統聚類法
系統聚類法的主要步驟有:數據標准化、相似性統計量計算和聚類。
1.數據標准化
在聚類分析中,聚類要素的選擇是十分重要的,它直接影響分類結果的准確性和可靠性。在地下水質量研究中,被聚類的對象常常是多個要素構成的。不同要素的數據差異可能很大,這會對分類結果產生影響。因此當分類要素的對象確定之後,在進行聚類分析之前,首先對聚類要素進行數據標准化處理。
假設把所考慮的水質分析點(G)作為聚類對象(有m個),用i表示(i=1,2,…,m);把影響水質的主要因素作為聚類指標(有n個),用j表示(j=1,2,…,n),它們所對應的要素數據可用表4-3給出。在聚類分析中,聚類要素的數據標准化的方法較多,一般採用標准差法和極差法。
表4-3 聚類對象與要素數據
對於第j個變數進行標准化,就是將xij變換為x′ij。
(1)總和標准化
區域地下水功能可持續性評價理論與方法研究
這種標准化方法所得的新數據x′ij滿足
區域地下水功能可持續性評價理論與方法研究
(2)標准差標准化
區域地下水功能可持續性評價理論與方法研究
式中:
由這種標准化方法所得的新數據x′ij,各要素的平均值為0,標准差為1,即有
區域地下水功能可持續性評價理論與方法研究
(3)極差標准化
區域地下水功能可持續性評價理論與方法研究
經過這種標准化所得的新數據,各要素的極大值為1,極小值為0,其餘的數值均在[0,1]閉區間內。
上述式中:xij為j變數實測值;xj為j變數的樣本平均值;sj為樣本標准差。
2.相似性統計量
系統聚類法要求給出一個能反映樣品間相似程度的一個數字指標,需要找到能量度相似關系的統計量,這是系統聚類法的關鍵。
相似性統計量一般使用距離系數和相似系數進行計算。距離系數是把樣品看成多維空間的點,用點間的距離來表示研究對象的緊密關系,距離越小,表明關系越密切。相似系數值表明樣本和變數間的相似程度。
(1)距離系數
常採用歐幾里得絕對距離,其中i樣品與j樣品距離dij為
區域地下水功能可持續性評價理論與方法研究
dij越小,表示i,j樣品越相似。
(2)相似系數
常見的相似系數有夾角餘弦和相關系數,計算公式為
1)夾角餘弦
區域地下水功能可持續性評價理論與方法研究
在式(4-20)中:-1≤cosθij≤1。
2)相關系數
區域地下水功能可持續性評價理論與方法研究
式中:dij為i樣品與j樣品的歐幾里得距離;cosθij為i樣品與j樣品的相似系數;rij為i樣品與j樣品的相關系數;xik為i樣品第k個因子的實測值或標准化值;xjk為j樣品第k個因子的實測值或標准化值;
3.聚類
在選定相似性統計量之後,根據計算結果構成距離或相似性系數矩陣(n×n),然後通過一定的方法把n個樣品組合成不同等級的分類單位,對類進行並類,即將最相似的樣品歸為一組,然後,把次相似的樣品歸為分類級別較高的組。聚類主要有直接聚類法、距離聚類法(最短距離聚類法、最遠距離聚類法)。
(1)直接聚類法
直接聚類法,是根據距離或相似系數矩陣的結構一次並類得到結果,是一種簡便的聚類方法。它首先把各個分類對象單獨視為一類,然後根據距離最小或相似系數最大的原則,依次選出一對分類對象,並成新類。如果一對分類對象正好屬於已歸的兩類,則把這兩類並為一類。每一次歸並,都劃去該對象所在的列與列序相同的行。經過n-1次把全部分類對象歸為一類,最後根據歸並的先後順序作出聚類分析譜系圖。
(2)距離聚類法
距離聚類法包括最短距離聚類法和最遠距離聚類法。最短距離聚類法具有空間壓縮性,而最遠距離聚類法具有空間擴張性。這兩種聚類方法關於類之間的距離計算可以用一個統一的公式表示:
區域地下水功能可持續性評價理論與方法研究
當γ=-0.5時,式(4-22)計算類之間的距離最短;當γ=0.5時,式(4-22)計算類之間的距離最遠。
最短、最遠距離法,是在原來的n×n距離矩陣的非對角元素中找出dpq=min(dij)或dpq=max(dij),把分類對象Gp和Gq歸並為一新類Gr,然後按計算公式:
dpq=min(dpk,dqk)(k≠ p,q) (4-23)
dpq=max(dpk,dqk)(k≠ p,q) (4-24)
計算原來各類與新類之間的距離,這樣就得到一個新的(n-1)階的距離矩陣;再從新的距離矩陣中選出最小或最大的dij,把Gi和Gj歸並成新類;再計算各類與新類的距離,直至各分類對象被歸為一類為止。最後綜合整個聚類過程,作出最短距離或最遠距離聚類譜系圖(圖4-1)。
圖4-1 地下水質量評價的聚類譜系圖
(二)模糊聚類法
模糊聚類法是普通聚類方法的一種拓展,它是在聚類方法中引入模糊概念形成的。該方法評價地下水質量的主要步驟,包括數據標准化、標定和聚類3個方面(付雁鵬等,1987)。
1.數據標准化
在進行聚類過程中,由於所研究的各個變數絕對值不一樣,所以直接使用原始數據進行計算就會突出絕對值大的變數,而降低絕對值小的變數作用,特別是在進行模糊聚類分析中,模糊運算要求必須將數據壓縮在[0,1]之間。因此,模糊聚類計算的首要工作是解決數據標准化問題。數據標准化的方法見系統聚類分析法。
2.標定與聚類
所謂標定就是計算出被分類對象間的相似系數rij,從而確定論域集U上的模糊相似關系Rij。相似系數的求取,與系統聚類分析法相同。
聚類就是在已建立的模糊關系矩陣Rij上,給出不同的置信水平λ(λ∈[0,1])進行截取,進而得到不同的分類。
聚類方法較多,主要有基於模糊等價關系基礎上的聚類與基於最大樹的聚類。
(1)模糊等價關系方法
所謂模糊等價關系,是指具有自反性(rii=1)、對稱性(rij=rji)與傳遞性(R·R⊆R)的模糊關系。
基於模糊等價關系的模糊聚類分析方法的基本思想是:由於模糊等價關系R是論域集U與自己的直積U×U上的一個模糊子集,因此可以對R進行分解,當用λ-水平對R作截集時,截得的U×U的普通子集Rλ就是U上的一個普通等價關系,也就是得到了關於U中被分類對象元素的一種。當λ由1下降到0時,所得的分類由細變粗,逐漸歸並,從而形成一個動態聚類譜系圖(徐建華,1994)。此類分析方法的具體步驟如下。
第一步:模糊相似關系的建立,即計算各分類對象之間相似性統計量。
第二步:將模糊相似關系R改造為模糊等價關系R′。模糊等價關系要求滿足自反性、對稱性與傳遞性。一般而言,模糊相似關系滿足自反性和對稱性,但不滿足傳遞性。因此,需要採用傳遞閉合的性質將模糊相似關系改造為模糊等價關系。改造的方法是將相似關系R自乘,即
R2=R·R
R4=R2·R2
︙
這樣計算下去,直到:R2k=Rk·Rk=Rk,則R′=Rk便是一個模糊等價關系。
第三步:在不同的截集水平下進行聚類。
(2)最大樹聚類方法
基於最大樹的模糊聚類分析方法的基本思路是:最大樹是一個不包含迴路的連通圖(圖4-2);選取λ水平對樹枝進行截取,砍去權重低於λ 的枝,形成幾個孤立的子樹,每一棵子樹就是一個類的集合。此類分析方法的具體步驟如下。
圖4-2 最大聚類支撐樹圖
第一步:計算分類對象之間的模糊相似性統計量rij,構建最大樹。
以所有被分類的對象為頂點,當兩點間rij不等於0時,兩點間可以用樹干連接,這種連接是按rij從大到小的順序依次進行的,從而構成最大樹。
第二步:由最大樹進行聚類分析。
選擇某一λ值作截集,將樹中小於λ值的樹干砍斷,使相連的結點構成一類,即子樹,當λ由1到0時,所得到的分類由細變粗,各結點所代表的分類對象逐漸歸並,從而形成一個動態聚類譜系圖。
在聚類方法中,模糊聚類法比普通聚類法有較大的突破,簡化了運算過程,使聚類法更易於掌握。
(三)灰色聚類法
灰色聚類是根據不同聚類指標所擁有的白化數,按幾個灰類將聚類對象進行歸納,以判斷該聚類對象屬於哪一類。
灰色聚類應用於地下水水質評價中,是把所考慮的水質分析點作為聚類對象,用i表示(i=1,2,…,n);把影響水質的主要因素作為聚類指標,用j表示(j=1,2,…,m),把水質級別作為聚類灰數(灰類),用k表示(k=1,2,3)即一級、二級、三級3個灰類(羅定貴等,1995)。
灰色聚類的主要步驟:確定聚類白化數、確定各灰色白化函數fjk、求標定聚類權重ηjk、求聚類系數和按最大原則確定聚類對象分類。
1.確定聚類白化數
當各灰類白化數在數量上相差懸殊時,為保證各指標間的可比性與等效性,必須進行白化數的無量綱化處理。即給出第i個聚類對象中第j個聚類指標所擁有的白化數,i=1,2,…,n;j=1,2,…,m。
2.確定各灰色白化函數
建立滿足各指標、級別區間為最大白化函數值(等於1),偏離此區間愈遠,白化函數愈小(趨於0)的功效函數fij(x)。根據監測值Cki,可在圖上(圖4-3)解析出相應的白化函數值fjk(Cik),j=1,2,…,m;k=1,2,3。
3.求標定聚類權重
根據式(4-25),計算得出聚類權重ηjk的矩陣(n×m)。
區域地下水功能可持續性評價理論與方法研究
式中:ηjk為第j個指標對第k個灰類的權重;λjk為白化函數的閾值(根據標准濃度而定)。
圖4-3 白化函數圖
註:圖4-3白化函數f(x)∈[0,1],具有下述特點:①平頂部分,表示該量的最佳程度。這部分的值為最佳值,即系數(權)為1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函數是單調變化的,左邊部分f(x)=L(x),單調增,x∈(x1,x2],稱為白化的左支函數;右邊部分f(x)=R(x),單調減,x∈[x3,x4),稱為白化的右支函數。③白化函數左右支函數對稱。④白化函數,為了簡便,一般是直線。⑤白化函數的起點和終點,一般來說是人為憑經驗確定。
4.求聚類系數
σik=∑fjk(dij)ηjk (4-26)
式中:σik為第i個聚類對象屬於第k個灰類的系數,i=1,2,…,n;k=1,2,3。
5.按最大原則確定聚類對象分類
由σik構造聚類向量矩陣,行向量最大者,確定k樣品屬於j級對應的級別。
用灰色聚類方法進行地下水水質評價,能最大限度地避免因人為因素而造成的「失真、失效」現象。
聚類方法計算相對復雜,但是計算結果與地下水質量標准級別對應性明顯,能夠較全面反映地下水質量狀況,也是較高層次定量研究地下水質量的重要方法。
2. 多因素.因素.聚類分析分法層次
摘要 聚類分析法是理想的多變數統計技術,主要有分層聚類法和迭代聚類法。 聚類分析也稱群分析、點群分析,是研究分類的一種多元統計方法
3. 聚類演算法有哪幾種
聚類演算法有:聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k均值、k中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。
4. 聚類分析法(CA)
3.2.3.1 技術原理
聚類分析又稱群分析(CA),它是研究(對樣品或指標)分類問題的一種多元統計方法。首先認為所研究的樣品或指標(變數)之間存在著程度不同的相似性(親疏關系),根據一批樣品的多個觀測指標具體找出一些能夠度量樣品或指標之間相似程度的統計量,以這些統計量為劃分類型的依據,把一些相似程度較大的樣品(或指標)聚合為一類,把另一些彼此之間相似程度較大的樣品(或指標)聚合為另一類,根據分類對象不同,可分為對樣品分類的Q型聚類分析和對指標分類的R型聚類分析兩種類型。聚類分析可用SPSS軟體直接實現,在水質時空變異、水化學類型分區中得到廣泛的應用。聚類分析的功能是建立一種分類方法,它將一批樣品或變數,按照它們在性質上的親疏、相似程度進行分類,聚類分析的內容十分豐富,按其聚類的方法可分為以下幾種:系統聚類法、調優法、最優分割法、模糊聚類法等。
聚類分析根據分類對象的不同又分為R型和Q型兩大類,R型是對變數(指標)進行分類,Q型是對樣品進行分類。為了對樣品(或變數)進行分類,就必須研究它們之間的關系,描述樣品間親疏相似程度的統計量很多,目前用得最多的是距離和相似系數。距離方法主要有:閔科夫斯基(Minkowski)距離、絕對值距離、歐氏距離等。
樣品間的親疏程度除了用距離描述外,也可用相似系數來表示,相似系數的構造主要有以下兩種方法:對於定量變數,我們通常採用的相似系數有xi和xj之間的夾角餘弦和相關系數。
3.2.3.2 方法流程
目前使用最多的聚類方法是系統聚類法,其基本思想是:先將n個樣品各自看成一類,共有n個類,然後計算類與類間的距離,選擇距離最小的兩類合並成一個新類,使總類數減少為n-1,接著再計算這n-1類兩兩間的距離,從中找出距離最近的兩類合並,總類數又減少一個,剩下n-2個類,照此下去,每合並一次,減少一類,直至所有樣品都合並成一類為止。在並類的過程當中,可以根據聚類的先後以及並類時兩類間的距離,畫出能直觀反映各樣品間相近和疏遠程度的聚類圖(也稱譜系圖),根據這張聚類圖有可能找到最合適的分類方案。系統聚類法的聚類原則決定於樣品間的距離(或相似系數)及類間距離的定義,類間距離的不同定義就產生了不同的系統聚類分析方法,類間距離的定義方法主要有最短距離法、最長距離法、中間距離法、重心法、類平均法。在合理地選定(或定義)樣品間的距離以後,再適當定義類間的距離,就確定了一種聚類規則,之後按照系統聚類法的一般步驟加以聚類(圖3.4)。
圖3.4 聚類分析技術流程圖
3.2.3.3 適用范圍
聚類分析能夠將變數及樣本按照相應的規則進行分類,在大樣本多參數數據降維方面具有相對的優勢,尤其是對於在時間、空間上具有復雜變化的數據,聚類分析能夠根據變數和樣本的相關性和相似性,將數據有效地劃分為不同的類別,並通過樹狀圖反映出樣品隨距離或變數間相似性變化的情況,為查清變數和樣品之間關系提供了依據,也為查明污染來源奠定了基礎。
5. 聚類演算法有哪幾種
聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;
(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;
(3)重新計算每個(有變化)聚類的均值(中心對象);
(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。
優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。
缺點:
1. K 是事先給定的,但非常難以選定;
2. 初始聚類中心的選擇對聚類結果有較大的影響。
6. 什麼是聚類分析聚類演算法有哪幾種
聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法。聚類分析起源於
分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行
定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識
難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又
將多元分析的技術引入到數值分類學形成了聚類分析。
聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論
聚類法、聚類預報法等。
聚類分析計算方法主要有如下幾種:分裂法(partitioning methods):層次法(hierarchical
methods):基於密度的方法(density-based methods): 基於網格的方法(grid-based
methods): 基於模型的方法(model-based methods)。
7. 多元統計分析法主要包括
多元統計分析方法主要包括線性回歸分析方法、判別分析方法、聚類分析方法、主成份分析方法、因子分析方法、對應分析方法、典型相關分析方法以及片最小二乘回歸分析方法等。
《多元統計分析方法》是2009年上海格致出版社出版的圖書,作者是(德)巴克豪斯。本書主要講解了多元統計分析中最常見的九種方法。
簡介
多元統計分析是從經典統計學中發展起來的一個分支,是一種綜合分析方法,它能夠在多個對象和多個指標互相關聯的情況下分析它們的統計規律,很適合農業科學研究的特點。主要內容包括多元正態分布及其抽樣分布、多元正態總體的均值向量和協方差陣的假設檢驗。
多元方差分析、直線回歸與相關、多元線性回歸與相關(Ⅰ)和(Ⅱ)、主成分分析與因子分析、判別分析與聚類分析、Shannon信息量及其應用。簡稱多元分析。當總體的分布是多維(多元)概率分布時,處理該總體的數理統計理論和方法。數理統計學中的一個重要的分支學科。
8. 常用的聚類方法有哪幾種
聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。
1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。
2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。
3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。
5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。
6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。
(8)多元聚類分析方法有哪些擴展閱讀:
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。
它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。
9. 聚類演算法有哪些
聚類演算法有:劃分法、層次法、密度演算法、圖論聚類法、網格演算法、模型演算法。
1、劃分法
劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法。
2、層次法
層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等。
3、密度演算法
基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等。
4、圖論聚類法
圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。
5、網格演算法
基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法。
6、模型演算法
基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。通常有兩種嘗試方向:統計的方案和神經網路的方案。
(9)多元聚類分析方法有哪些擴展閱讀:
聚類分析起源於分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又將多元分析的技術引入到數值分類學形成了聚類分析。聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論聚類法、聚類預報法等。
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
10. 多元分析的分析方法
包括3類:①多元方差分析、多元回歸分析和協方差分析,稱為線性模型方法,用以研究確定的自變數與因變數之間的關系;②判別函數分析和聚類分析,用以研究對事物的分類;③主成分分析、典型相關和因素分析,研究如何用較少的綜合因素代替為數較多的原始變數。 是把總變異按照其來源(或實驗設計)分為多個部分,從而檢驗各個因素對因變數的影響以及各因素間交互作用的統計方法。例如,在分析2×2析因設計資料時,總變異可分為分屬兩個因素的兩個組間變異、兩因素間的交互作用及誤差(即組內變異)等四部分,然後對組間變異和交互作用的顯著性進行F檢驗。
優點
是可以在一次研究中同時檢驗具有多個水平的多個因素各自對因變數的影響以及各因素間的交互作用。其應用的限制條件是,各個因素每一水平的樣本必須是獨立的隨機樣本,其重復觀測的數據服從正態分布,且各總體方差相等。 用以評估和分析一個因變數與多個自變數之間線性函數關系的統計方法。一個因變數y與自變數x1、x2、…xm有線性回歸關系是指:
其中α、β1…βm是待估參數,ε是表示誤差的隨機變數。通過實驗可獲得x1、x2…xm的若干組數據以及對應的y值,利用這些數據和最小二乘法就能對方程中的參數作出估計,記為╋、勮…叧,它們稱為偏回歸系數。
優點
是可以定量地描述某一現象和某些因素間的線性函數關系。將各變數的已知值代入回歸方程便可求得因變數的估計值(預測值),從而可以有效地預測某種現象的發生和發展。它既可以用於連續變數,也可用於二分變數(0,1回歸)。多元回歸的應用有嚴格的限制。首先要用方差分析法檢驗因變數y與m個自變數之間的線性回歸關系有無顯著性,其次,如果y與m個自變數總的來說有線性關系,也並不意味著所有自變數都與因變數有線性關系,還需對每個自變數的偏回歸系數進行t檢驗,以剔除在方程中不起作用的自變數。也可以用逐步回歸的方法建立回歸方程,逐步選取自變數,從而保證引入方程的自變數都是重要的。 把線性回歸與方差分析結合起來檢驗多個修正均數間有無差別的統計方法。例如,一個實驗包含兩個多元自變數,一個是離散變數(具有多個水平),一個是連續變數,實驗目的是分析離散變數的各個水平的優劣,此變數是方差變數;而連續變數是由於無法加以控制而進入實驗的,稱為協變數。在運用協方差分析時,可先求出該連續變數與因變數的線性回歸函數,然後根據這個函數扣除該變數的影響,即求出該連續變數取等值情況時因變數的修正均數,最後用方差分析檢驗各修正均數間的差異顯著性,即檢驗離散變數對因變數的影響。
優點
可以在考慮連續變數影響的條件下檢驗離散變數對因變數的影響,有助於排除非實驗因素的干擾作用。其限制條件是,理論上要求各組資料(樣本)都來自方差相同的正態總體,各組的總體直線回歸系數相等且都不為0。因此應用協方差分析前應先進行方差齊性檢驗和回歸系數的假設檢驗,若符合或經變換後符合上述條件,方可作協方差分析。 判定個體所屬類別的統計方法。其基本原理是:根據兩個或多個已知類別的樣本觀測資料確定一個或幾個線性判別函數和判別指標,然後用該判別函數依據判別指標來判定另一個個體屬於哪一類。
判別分析不僅用於連續變數,而且藉助於數量化理論亦可用於定性資料。它有助於客觀地確定歸類標准。然而,判別分析僅可用於類別已確定的情況。當類別本身未定時,預用聚類分析先分出類別,然後再進行判別分析。 解決分類問題的一種統計方法。若給定n個觀測對象,每個觀察對象有p個特徵(變數),如何將它們聚成若干可定義的類?若對觀測對象進行聚類,稱為Q型分析;若對變數進行聚類,稱為R型分析。聚類的基本原則是,使同類的內部差別較小,而類別間的差別較大。最常用的聚類方案有兩種。一種是系統聚類方法。例如,要將n個對象分為k類,先將n個對象各自分成一類,共n類。然後計算兩兩之間的某種「距離」,找出距離最近的兩個類、合並為一個新類。然後逐步重復這一過程,直到並為k類為止。另一種為逐步聚類或稱動態聚類方法。當樣本數很大時,先將n個樣本大致分為k類,然後按照某種最優原則逐步修改,直到分類比較合理為止。
聚類分析是依據個體或變數的數量關系來分類,客觀性較強,但各種聚類方法都只能在某種條件下達到局部最優,聚類的最終結果是否成立,尚需專家的鑒定。必要時可以比較幾種不同的方法,選擇一種比較符合專業要求的分類結果。 把原來多個指標化為少數幾個互不相關的綜合指標的一種統計方法。例如,用p個指標觀測樣本,如何從這p個指標的數據出發分析樣本或總體的主要性質呢?如果p個指標互不相關,則可把問題化為p個單指標來處理。但大多時候p個指標之間存在著相關。此時可運用主成分分析尋求這些指標的互不相關的線性函數,使原有的多個指標的變化能由這些線性函數的變化來解釋。這些線性函數稱為原有指標的主成分,或稱主分量。
主成分分析有助於分辨出影響因變數的主要因素,也可應用於其他多元分析方法,例如在分辨出主成分之後再對這些主成分進行回歸分析、判別分析和典型相關分析。主成分分析還可以作為因素分析的第一步,向前推進就是因素分析。其缺點是只涉及一組變數之間的相互依賴關系,若要討論兩組變數之間的相互關系則須運用典型相關。 先將較多變數轉化為少數幾個典型變數,再通過其間的典型相關系數來綜合描述兩組多元隨機變數之間關系的統計方法。設x是p元隨機變數,y是q元隨機變數,如何描述它們之間的相關程度?當然可逐一計算x的p個分量和y的q個分量之間的相關系數(p×q個), 但這樣既繁瑣又不能反映事物的本質。如果運用典型相關分析,其基本程序是,從兩組變數各自的線性函數中各抽取一個組成一對,它們應是相關系數達到最大值的一對,稱為第1對典型變數,類似地還可以求出第2對、第3對、……,這些成對變數之間互不相關,各對典型變數的相關系數稱為典型相關系數。所得到的典型相關系數的數目不超過原兩組變數中任何一組變數的數目。
典型相關分析有助於綜合地描述兩組變數之間的典型的相關關系。其條件是,兩組變數都是連續變數,其資料都必須服從多元正態分布。
以上幾種多元分析方法各有優點和局限性。每一種方法都有它特定的假設、條件和數據要求,例如正態性、線性和同方差等。因此在應用多元分析方法時,應在研究計劃階段確定理論框架,以決定收集何種數據、怎樣收集和如何分析數據資料。