1.避免「一步到位」
是指解題過程中,省略關鍵步驟,而直接得到答案,這樣扣分是嚴重的.由於解答題是嚴格按照步驟給分的,如果解題過程中失去關鍵步驟,跳過擬考查的知識點、能力點,就意味著失去得分點,自然被扣分.
例1(2000年全國高考題) 已知函數y= cos2x+ sinxcosx+1,x∈R.
(I) 當函數y取得最大值時,求自變數x的集合;
(II) 該函數的圖像可由y=sinx(x∈R)的圖像經過怎樣的平移和伸縮變換得到?
解:(I)由題設可得,y= sin(2x+ )+ ,故有
當 x= +k ,k∈Z,函數y取得最大值.
(II) 略.
評註:在(Ⅰ)的解答中犯了「大題小作」中的「一步到位」錯誤,缺少了化簡過程的3個要點與何時取到最大值的1個要點,因而被扣分.
2. 避免「使用升華結論」
在解選擇和填空題中,使用升華結論(教材中未給出的正確結論)是允許的,而且還是一種簡捷快速的答題技巧.而直接運用(不加說明或證明)在解答題中是不合適的,且是「大題小作」,要適當扣分的.
解答高考解答題的理論根據應該是教材中的定義、定理、公理和公式,而學生使用「升華結論」則達不到考查能力、考查過程的目的,因此不能以題解題,不能直接運用教材以外別的東西,以免被扣分.
例2⑴(1991年全國高考題) 根據函數單調性的定義,證明函數f (x)=-x3+1在(-∞,+∞)上是減函數.
⑵(2001年全國高考題) 設拋物線y2 =2px (p>0)的焦點為F,經過點F的直線交拋物線於A、B兩點,點C在拋物線的准線上,且BC∥x軸.證明直線AC經過原點O.
評分標准中指出:
對於⑴:「利用y=x3在[0,+∞)上是增函數的性質,未證明y=x3在(-∞,+∞)上也是增函數而直接寫出f(x1)-f(x2)= - <0,未能證明為什麼 - <0過程,由評分標准知最多得3分.
對於⑵:有些考生證明時,直接運用課本中的引申結論「y1 y2=p2」而跳過擬考查的知識點、能力點而被扣2分.
對於課本習題、例題的結論,是要通過證明才能直接使用(黑體字結論例外),否則將被「定性」為解題不完整而被扣分.又如1996年高考理科第22(Ⅱ)及2001年全國高考理科第17(Ⅱ)利用面積射影定理,由於不加證明而直接使用,因而被扣分.
3 避免「答非所問」
是指沒有根據題意要求或沒有看清題意要求,用其它方法或結論作答,這明顯也要被扣分的.
例3(1993年全國高考題)已知數列
Sn為其前n項和.計算得 觀察上述結果,推測出計算Sn的公式,並用數學歸納法加以證明.
解:依據題意,推測出Sn的公式為:
Sn= .
∵ ak= = - ,
分別取k=1,2,3,…,n,並將n個式子相加得:
Sn=1- = .
評注 以上解法可謂「簡單、明了」,但證明時不用數學歸納法,為「答非所問」,不合題意,扣分是必然的. 又如1999年高考第22題(應用題),第(Ⅰ)問中求「冷軋機至少需要安裝多少對軋輥」,要求是用整數作答,不少考生未能用整數作答,違背題意而被扣分.
(四)了解「評分標准」,把握得分點
掌握解答題的「得分點」就要了解高考的評分標准,解答題評分標準是分步給分,但並非寫得越多得分越高,而是踏上得分點就給分,即按所用的數學知識,數學思想方法要點式給分,允許「等價答案」,允許「跳步得分」. 因此解答時,應步驟清,要點明,格式齊. 對於不同題型的給分規律有:
1.立幾題得分點
通常分作證,計算兩部分給分,各段中間又按要點給分.證明主要寫清兩點:①空間位置關系的判斷推理的依據(課本中的定理、公理);②什麼是空間角和距離及理由(緊扣定義). 特別要注意沒有寫清角、距離要被扣分. 計算過程的書寫:計算一般是解三角形,要寫清三角形的條件及解出的結果. 用等積法解題,要找出等積關系並計算. 都是分段得分的,如1998年23題,1999年22題,都有3個小題,每小題4分,其中作證2分,計算2分.
2.分類討論題得分點
按所分類分別給分,加上歸納的格式(即寫為「綜上:當××時,結論是××」)分. 如1996年第20題,按a>1和0<a<1兩類分別給5分,歸納給1分. 2000年理19(Ⅱ),求 a 的取值范圍,使函數在區間[0,+∞)上是單調函數,按 a≥1和0<a<1討論各得2分.
3.應用題得分點
按設列、解答兩部分給分. 特別要注意不答和答錯都要扣1分,應注意設、列、解、答的完整性,爭取步驟階段分.
4.推理證明題得分點
按推理格式,推理變形步驟給分. 對於用定義證明函數的單調性、奇偶性,用數學歸納法證題,都有嚴格的格式分,應完整,避免失分. 即使推理證明不出,寧可跳步作答,也要套用格式. 從條件、結論兩頭往中間靠,這樣寫完格式,這樣可以少扣分.
5.綜合題得分點
按解答的過程,分步給分,每個步驟又按要點給分. 盡可能把過程分步寫出,盡量不跳步,根據題意
列出關系,譯出題設中每一個條件,能演算幾步算幾步,尚未成功不等於失敗,特別是那些解題層次分明的題目,那些已經程序化的方法,每進行一步得分點的演算都可以得到這一步的滿分,最後結論雖然沒有算出來,但分數已過半,所以說,「大題拿小分」也是一個好主意. 因此盡量增加分步得分機會,千萬別輕易留空白題.
(五)常用的解答題解題技巧
1.較簡單的解答題的求解
對於比較容易解答的解答題(一般是前面3道),宜採用一慢一快的方法,就是審題要慢,解題要快,速戰速決,為後面3道解答題留下時間.
找到解題方法後,書寫要簡明扼要,快速規范,不要拖泥帶水,羅唆重復,用閱卷老師的話,就是寫出「得分點」,一般來講,一個原理寫一步就可以了。至於不是題目直接考查的過渡知識,可以直接寫出結論,高考允許合理省略非關鍵步驟,應詳略得當。
例2004北京理科第15題
在 中, , , ,求 的值和 的面積.
分析:本小題主要考查三角恆等變形、三角形面積公式等基本知識,考查運算能力
解:
又 ,
.
2.較難的解答題的求解
對於較難的解答題(後面3道)來說,要想在有限的時間內做全對是不大現實的.當然也不能全部放棄,應該盡可能的爭取多拿分.對於絕大多數考生來說,在這里重要的是:如何從拿不下來的題目中分段得點分。我們說,有什麼樣的解題策略,就有什麼樣的得分策略,下面談四個觀點。
(1)、缺步解答
如果我們遇到一個很困難的問題,確實啃不動,一個明智的策略是:將它分解成為一個系列的步驟,或者是一個個子問題,能演算幾步就演算幾步,尚未成功不等於徹底失敗,每進行一步得分點的演算就可以得到這一步的滿分,最後結論雖然沒有得出來,但分數卻已過半。因為近幾年高考解答題的特點是:入口易完善難,不可輕易放棄任何一題。
例: (2004浙江理科第21題)已知雙曲線的中心在原點,右頂點為A(1,0)點P、Q在雙曲線的右支上,支M(m,0)到直線AP的距離為1.
(Ⅰ)若直線AP的斜率為k,且 ,求實數m的取值范圍;
(Ⅱ)當 時,ΔAPQ的內心恰好是點M,求此雙曲線的方程.
解: (Ⅰ)由條件得直線AP的方程
即
因為點M到直線AP的距離為1,
∵ 即 .
∵ ∴
解得 +1≤m≤3或--1≤m≤1-- .
∴m的取值范圍是
(Ⅱ)可設雙曲線方程為 由
得 .
又因為M是ΔAPQ的內心,M到AP的距離為1,所以∠MAP=45º,直線AM是∠PAQ的角平分線,且M到AQ、PQ的距離均為1.因此, (不妨設P在第一象限)
直線PQ方程為 .
直線AP的方程y=x-1,
∴解得P的坐標是(2+ ,1+ ),將P點坐標代入 得,
所以所求雙曲線方程為
即
(2)、跳步解答
解題卡在某一過渡環節上是常見的,這時,我們可以先承認中間結論,往後推,看能否得到結論。如果得不出,證明這個途徑不對,立即改變方向;如果能得出預期結論,我們再回過頭來,集中力量攻克這個「中途點」。由於高考時間的限制,「中途點」的攻克來不及了,那麼可以把前面的寫下來,再寫上「證明某步之後,繼而有……」一定做到底。也許,後來中間步驟又想出來了,這時不要亂七八糟地補上去,可補在後面,可書寫為「事實上,某步可證如下」。
有的題目可能設有多問,第一問求不出來,可以把第一問當成已知,先做第二問,這也算做是跳步解答。
例: (2004天津文科第18題) 從4名男生和2名女生中任選3人參加演講比賽.
(I) 求所選3人都是男生的概率;
(II)求所選3人中恰有1名女生的概率;
(III)求所選3人中至少有1名女生的概率.
解: (I) 所選3人都是男生的概率為
(II)所選3人中恰有1名女生的概率為
(III)所選3人中至少有1名女生的概率為
這3道小題可以說是互相獨立的,彼此不相干.所以如果第1小題做不來,可以跳過去,直接做第2小題.
(3)、退步解答
「以退求進」是一個重要的解題策略,如果你不能解決題中所提出的問題,那麼,你可以從一般退到特殊,從復雜退到簡單,從整體退到局部。總之,退到一個你能夠解決的問題,比如,{an}是公比為q的等比數列,Sn為{an}的前n項和,若Sn成等差數列,求公比q=____.
對等比數列問題,我們需考慮到q=1,q≠1兩種情況,你可以先對特殊的q=1進行討論,滿足題意,找到解題思路和情緒上的穩定後,再討論q≠1時是否也滿足題意,發現無解,如果對q≠ 1的情況你確實不會解,你還可以開門見山的寫上:本題分兩種情況:q=1或q≠1.
也許你只能完成一種情況,但你沒有用一種情況來代替主體。在概念上、邏輯上是清楚的。另外「難的不會做簡單的」還為尋找正確的、一般的解題方法提供了有意義的啟發。
4、輔助解答
一道題目的完整解答,即要有主要的實質性的步驟,也要有次要的輔助性的步驟,如:准確的作圖,把題目中的條件翻譯成數學表達式,設應用題中的未知量,函數中變數的取值范圍,軌跡題中的動點坐標,數學歸納法證明時,第一步n的取值等,如果處理得當,也會增分,不要小視它們。
另外,書寫也是輔助解答,卷面隨意塗改及正確答案的位置不合理,都會造成不必要的失分。
所以,有人說,書寫工整,卷面整齊也得分,不無道理。
2. 數學分析學習方法
數學分析課程有一個特點是重要、枯燥。重要是顯而易見的,數學分析作為專業基礎課程,對其它後繼課程的學習至關重要;同時它又是枯燥乏味的,這似乎是一對矛盾,要處理這對矛盾,就要解決一個數學分析學習當中的技巧性問題和心理問題。當然不可能人人都能把數學分析學好,由於各人的性向不同,有的人傾向於人文學科,有的人傾向於邏輯思維,有的人傾向於空間思維,有的人則傾向於動手能力….各人的傾向性不一樣,擅長的方 面也各不相同,對數學分析能達到的程度也不一樣。一. 數學分析中關於概念的問題�6�1 概念的形成需要一個過程。與人生哲理等概念不同,數學分析概念具有疊加性,也就是說新概念是在舊概念疊加的基礎上來認識的。概念是數學分析中的一個根本問 題,不是靠背,而是在不斷地運用中逐漸形成的,須經過比較、實踐、摸索、總結、歸納等過程,最後建立一個完整的概念。這個過程甚至可以說是痛苦的,漫長的 一個階 段。�6�1 概念具有長期性。每個概念都有一個失敗— 認識 —再失敗的過程,伴隨著你對這個概念的錯誤理解,在挫折中不斷加深的。�6�1 概念是隨著一個人知識的增加而不斷深入的。學數學分析對一個人建立完整的思維方式很重要,隨著對不同數學分析概念的深入理解,人們處理問題的方式可以越來越趨於嚴謹。�6�1 要建立一個數學分析的概念網。數學分析是一個個概念的點陣,所有的相關的、從屬的概念要在頭腦中形成一個網路。學概念要把不能納入其中的或相關概念認識清楚。總概念中各相關概念是怎樣發展的要有一個清晰的脈絡。�6�1 從不同的層面上來理解一個數學概念。有比較才有認識,對於一個數學分析概念要擅於從正面、側面、上面、下面等各個層面上來認識它。對於相似的、類似的概念或概念的內部關系認識不清,不利於理解概念,這說明數學分析末學深入。二. 運算能力 符號化、模式化是數學分析的一大特點,對這點我們應該有深刻的認識。1. 模式化。數學分析的一些定理、原理、公理都有一定的模式,「因為……所以…」即最簡單的一種模式,對各種數學模式的理解認識也是對人的邏輯思維能力的訓練。符號化。數學分析的符號與表達性符號不同,文學藝術中的表達性符號是需要我們仔細體會其中的含義的;而數學分析 中的符號是一種替代性符號,它無需我們想其含義,作用就在於推導,它只是一個替身,幫助我們進行數學思維,所以我們不可以在它的含義上耗費太多的精力。數 學就是符號游戲,我們對符號必須精通,才能進行迅速變形。三. 做題技巧�6�1 從做題方式來分,平時作業可分為硬作業和軟作業兩種:硬作業是指每天需要認認真真做的作業,這類作業要按正規的步驟一絲不苟地做,旨在訓練自己的筆頭功夫 和書寫能力;軟作業是指每日需抽出一定的時間來瀏覽若干習題,這類題主要是用來鍛煉自己的思維能力的,具體做法是無需動筆,眼睛看著習題,大腦中迅速掠過 這道題的思路、做法,整個過程有點類似空對空。所以在平日做題中兩種方式要搭配使用,認真做的題和瀏覽的題要相濟並用。�6�1 做題要有節奏,難易結合。做題要講質量,不能把精力都放在做偏、難、怪的題型上,若平時將重心放在難題上,基礎知識難免會偏失,所以平時適度地做一些中等難度的題即可,關鍵是要學好基礎知識,循序漸進。�6�1 做題要留下體會,留下痕跡,學習分為三個過程:模仿、品味、遷移。模仿是初始階段經常作用的一種方式,以老師或教科書為參照,按部就班地做。經過一次次地 模仿,我們自己對這些記憶中的題型在大腦中進一步地加工、體會,形成自己對這類題的成型的理解。經過前兩個階段的積累,最後達到將原知識體系與現有知識的 相互融合,就實現了對新、舊知識的最新體會。四. 數學分析學習方法 常見的數學方法有如下幾種:�6�1 化歸法。將復雜化問題化為若干個簡單的問題的一種思想。�6�1 注意經常對知識進行歸納、整理、總結,促進學過的知識更加系統化、條理化,解題時就能比較順利地將內在關系理順。�6�1 做題時應樹立一種次序和關聯的思想。數學的題干中各要素一般都是按一定的次序和關系排放的,做題前要審清題意,分先後,分主次,各個擊破。
3. 常用的數學分析方法有哪些
你問的是什麼層次?
1、數學分析方法的基本內容是數學化、模型化和計算機化。從數學角度看,數學中發現了許多有實用價值的手段,如線性規劃、整數規劃、動態規劃、對策論、排隊論、存貨模型、調度模型、概率統計等等,對定量化的分析與決斷起到了重大的推動作用;從模型化角度看,每一種數學手段都包括了解決決策問題的具體數學模型,人們可以藉助於模型找出自己所需了解的問題的答案;從計算機化的角度看,人們可以借用電子計算機這個快速邏輯計算工具,縮短解決問題的時間,增強預測的精確性。這「三化」是互相聯系的,它們的結合使決策的技術和方法發生了重大變化。
2、另一個層次:待定系數法,換元法,數學歸納法。
4. 數學分析方法的常用數學分析方法
1.線性規劃;
2.盈虧平衡分析;
3.計劃評審法;
4.收益矩陣決策;
5.排隊模型;
6.其他幾種方法。
(1)等可能法;
(2)大中取大法(樂觀法);
(3)小中取大法(悲觀法);
(4)樂觀系數法;
(5)沙凡奇(Savage)法(後悔值大中取小法)。
5. 誰能夠告訴我該如何去學習「數學分析」學習數學分析的方法,初學者該注意些什麼
學數學分析要從兩個方向入手,一個是大分析理論,一個是高等數學,高等數學偏重於計算,較為簡單,與工科學生學習的數學內容基本相當,較為簡單,大分析理論主要是集中於實數域上六大定理的互證,以及二維空間上的相關定理的證明.這一部分是數學分析的精華所在. 學習數學分析時要注意數學分析和高等數學要求不同的地方,這些地方就一定要學好,否則你學習數學分析就與高等數學沒有什麼區別了.而且高等數學強調的是計算能力,數學分析強調的是分析的能力,分析的能力沒有學到,計算功底也不夠,那麼你學數學專業又有什麼用呢? 我推薦一套教材,是劉玉璉編的<數學分析講義>和配套的<數學分析講義學習輔導用書>,兩本書配套使用,效果很好的. 學數學分析是要畫時間的,要多花時間思考,不要總是把自己沉溺於做題中.<數學分析講義學習輔導用書>中每一節的問題答疑部分要好好研究研究.
記得採納啊
6. 想知道數學分析這個名字是怎麼來的
在古希臘數學的早期,數學分析的結果是隱含給出的。比如,芝諾的兩分法悖論就隱含了無限幾何和。再後來,古希臘數學家如歐多克索斯和阿基米德使數學分析變得更加明確,但還不是很正式。他們在使用窮竭法去計算區域和固體的面積和體積時,使用了極限和收斂的概念。在古印度數學的早期,12世紀的數學家婆什迦羅第二給出了導數的例子,還使用過現在所知的羅爾定理。
數學分析的創立始於17世紀以牛頓(Newton,I.)和萊布尼茨(Leibnize,G.W)為代表的開創性工作,而完成於19世紀以柯西(Cauchy,A.-L.)和魏爾斯特拉斯(Weierstrass,K.(T.W.))為代表的奠基性工作。從牛頓開始就將微積分學及其有關內容稱為分析。其後,微積分學領域不斷擴大,但許多數學家還是沿用這一名稱。時至今日,許多內容雖已從微積分學中分離出去,成了獨立的學科,而人們仍以分析統稱之。數學分析亦簡稱分析。
牛頓
數學分析的研究對象是函數,它從局部和整體這兩個方面研究函數的基本性態,從而形成微分學和積分學的基本內容。微分學研究變化率等函數的局部特徵,導數和微分是它的主要概念,求導數的過程就是微分法。圍繞著導數與微分的性質、計算和直接應用,形成微分學的主要內容。積分學則從總體上研究微小變化(尤其是非均勻變化)積累的總效果,其基本概念是原函數(反導數)和定積分,求積分的過程就是積分法。積分的性質、計算、推廣與直接應用構成積分學的全部內容。牛頓和萊布尼茨對數學的傑出貢獻就在於,他們在1670年左右,總結了求導數與求積分的一系列基本法則,發現了求導數與求積分是兩種互逆的運算,並通過後來以他們的名字命名的著名公式反映了這種互逆關系,從而使本來各自獨立發展的微分學和積分學結合而成一門新的學科——微積分學。又由於他們及一些後繼學者(特別是歐拉(Euler,L.))的貢獻,使得本來僅為少數數學家所了解,只能相當艱難地處理一些個別具體問題的微分與積分方法,成為一種常人稍加訓練即可掌握的近於機械的方法,打開了把它廣泛應用於科學技術領域的大門,其影響所及,難以估量。因此,微積分的出現與發展被認為是人類文明史上劃時代的事件之一。與積分相比,無窮級數也是微小量的疊加與積累,只不過取離散的形式(積分是連續的形式)。因此,在數學分析中,無窮級數與微積分從來都是密不可分和相輔相成的。在歷史上,無窮級數的使用由來已久,但只在成為數學分析的一部分後,才得到真正的發展和廣泛應用。
歐拉
數學分析的基本方法是極限的方法,或者說是無窮小分析。洛比達(L』Hospital,G.-F.-A. de)於1696年在巴黎出版的世界上第一本微積分教科書,歐拉於1748年出版的兩卷本溝通微積分與初等分析的書,書名中都出現過無窮小分析這個詞。在微積分學發展的初期,這種新的方法顯示出巨大的力量,因而得到大批重要的成果。許多與微積分有關的新的數學分支,如變分法、微分方程以至於微分幾何和復變函數論,都在18—19世紀初發展起來。然而,初期的分析還是比較粗糙的,被新方法的力量鼓舞的數學家們經常不顧演繹的邏輯根據,使用著直觀的猜測和自相矛盾的推理,以致在整個18世紀,對這種方法的合理性普遍存在著懷疑。這些懷疑在很大程度上是從當時經常使用的無窮小的含義與用法上引起的。隨意使用與解釋無窮小導致了混亂和神秘感。許多人參與了無窮小本質的論爭,其中有些人,如拉格朗日(Lagrange,J.-L.),試圖排除無窮小與極限,把微積分代數化。論爭使函數與極限的概念逐漸明朗化。越來越多的的數學家認識到,必須把數學分析的概念與其在客觀世界的原型以及人的直覺區分開來。
柯西
因而,從19世紀初開始了一個一個把分析算術化(使分析成為一種像算術那樣的演繹系統)為特徵的新的數學分析的批判改造時期。柯西於1821年出版的《分析教程》是分析嚴密化的一個標志.在這本書中,柯西建立了接近現代形式的極限,把無窮小定義為趨於零的變數,從而結束了百年的爭論.在極限的基礎上,柯西定義了函數的連續性、導數、連續函數的積分和級數的收斂性(後來知道,波爾查諾(Bolzano,B.)同時也做過類似的工作)。進一步,狄利克雷於(Dirichlet,P.G.L.)1837年提出了函數的嚴格定義,魏爾斯特拉斯引進了極限的ε-δ定義。基本上實現了分析的算術化,使分析從幾何直觀的局限中得到了「解放」,從而驅散了17—18世紀籠罩在微積分外面的神秘雲霧。
繼而在此基礎上,黎曼(Riemann,(G.F.)B.)於1854年和達布(Darboux,(J.-)G.)於1875年對有界函數建立了嚴密的積分理論,19世紀後半葉,戴德金(Dedekind,J.W.R)等人完成了嚴格的實數理論。至此,數學分析的理論和方法完全建立在牢固的基礎之上,基本上形成了一個完整的體系,也為20世紀現代分析的發展鋪平了道路。
7. 關於數學分析的學習方法
這樣沒有問題,一開始覺得可能比較慢,但基礎扎實。還有,要注意學習的節奏,不能在某些問題上乾耗。實在搞不明白,可以放著,以後學習深了,再來研究,說不定就會有意外收獲。有問題時可以找志同道合的一起研究,也是一大樂事。
8. 數學分析與實分析(實變函數)有什麼關系
從教學實踐上來說,一般是學完數分以後再同時學實分析(國內等價於實變)和復變(兩者獨立教學),學完復變之後再學復分析。但從邏輯關繫上來說,不學數分直接學實變也是可以的,因為勒貝格測度和積分的定義實際上是獨立於黎曼積分的,只是它整套機器更為龐大而已。
數學分析的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
為微積分學的進一步發展,它的基礎是點集論。所謂點集論,就是專門研究點所成的集合的性質的理論,也可以說實變函數論是在點集論的基礎上研究分析數學中的一些最基本的概念和性質的。
相關聯系
微積分理論的產生離不開物理學,天文學,經濟學,幾何學等學科的發展,微積分理論從其產生之日起就顯示了巨大的應用活力,所以在數學分析的教學中,應強化微積分與相鄰學科之間的聯系,強調應用背景,充實理論的應用性內容。
數學分析的教學除體現本課程嚴格的邏輯體系外,也要反映現代數學的發展趨勢,吸收和採用現代數學的思想觀點與先進的處理方法,提高學生的數學修養。
以上內容參考:網路-數學分析
9. 數學分析方法的介紹
數學分析方法是一種決策分析方法,產生於第二次世界大戰期間。
10. 什麼是數學分析法
簡單的說它是數學里最基本的分析方法,就是用分析加數學算式來解決數學問題的方法。