導航:首頁 > 研究方法 > 什麼是代數方法

什麼是代數方法

發布時間:2022-04-16 18:12:24

『壹』 什麼是數學的代數

最簡單的說法就是用字母帶替數
詳解
代數
代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和復數,以及以它們為系數的多項式的代數運算理論和方法的數學分支學科。
初等代數是更古老的算術的推廣和發展。在古代,當算術里積累了大量的,關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,以解決各種數量關系的問題,就產生了以解方程的原理為中心問題的初等代數。

代數是由算術演變來的,這是毫無疑問的。至於什麼年代產生的代數學這門學科,就很不容易說清楚了。比如,如果你認為「代數學」是指解bx+k=0這類用符號表示的方程的技巧。那麼,這種「代數學」是在十六世紀才發展起來的。

如果我們對代數符號不是要求象現在這樣簡練,那麼,代數學的產生可上溯到更早的年代。西方人將公元前三世紀古希臘數學家刁藩都看作是代數學的鼻祖。而在中國,用文字來表達的代數問題出現的就更早了。

「代數」作為一個數學專有名詞、代表一門數學分支在我國正式使用,最早是在1859年。那年,清代數學家裡李善蘭和英國人韋列亞力共同翻譯了英國人棣么甘所寫的一本書,譯本的名稱就叫做《代數學》。當然,代數的內容和方法,我國古代早就產生了,比如《九章算術》中就有方程問題。

初等代數的中心內容是解方程,因而長期以來都把代數學理解成方程的科學,數學家們也把主要精力集中在方程的研究上。它的研究方法是高度計算性的。

要討論方程,首先遇到的一個問題是如何把實際中的數量關系組成代數式,然後根據等量關系列出方程。所以初等代數的一個重要內容就是代數式。由於事物中的數量關系的不同,大體上初等代數形成了整式、分式和根式這三大類代數式。代數式是數的化身,因而在代數中,它們都可以進行四則運算,服從基本運算定律,而且還可以進行乘方和開方兩種新的運算。通常把這六種運算叫做代數運算,以區別於只包含四種運算的算術運算。

在初等代數的產生和發展的過程中,通過解方程的研究,也促進了數的概念的進一步發展,將算術中討論的整數和分數的概念擴充到有理數的范圍,使數包括正負整數、正負分數和零。這是初等代數的又一重要內容,就是數的概念的擴充。

有了有理數,初等代數能解決的問題就大大的擴充了。但是,有些方程在有理數范圍內仍然沒有解。於是,數的概念在一次擴充到了實數,進而又進一步擴充到了復數。

那麼到了復數范圍內是不是仍然有方程沒有解,還必須把復數再進行擴展呢?數學家們說:不用了。這就是代數里的一個著名的定理—代數基本定理。這個定理簡單地說就是n次方程有n個根。1742年12月15日瑞士數學家歐拉曾在一封信中明確地做了陳述,後來另一個數學家、德國的高斯在1799年給出了嚴格的證明。

把上面分析過的內容綜合起來,組成初等代數的基本內容就是:

三種數——有理數、無理數、復數

三種式——整式、分式、根式

中心內容是方程——整式方程、分式方程、根式方程和方程組。

初等代數的內容大體上相當於現代中學設置的代數課程的內容,但又不完全相同。比如,嚴格的說,數的概念、排列和組合應歸入算術的內容;函數是分析數學的內容;不等式的解法有點像解方程的方法,但不等式作為一種估算數值的方法,本質上是屬於分析數學的范圍;坐標法是研究解析幾何的……。這些都只是歷史上形成的一種編排方法。

初等代數是算術的繼續和推廣,初等代數研究的對象是代數式的運算和方程的求解。代數運算的特點是只進行有限次的運算。全部初等代數總起來有十條規則。這是學習初等代數需要理解並掌握的要點。

這十條規則是:

五條基本運算律:加法交換律、加法結合律、乘法交換律、乘法結合律、分配律;

兩條等式基本性質:等式兩邊同時加上一個數,等式不變;等式兩邊同時乘以一個非零的數,等式不變;

三條指數律:同底數冪相乘,底數不變指數相加;指數的乘方等於底數不變指數想乘;積的乘方等於乘方的積。

『貳』 什麼是代數什麼是代數式

代數:是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和復數,以及以它們為系數的多項式的代數運算理論和方法的數學分支學科。 初等代數是更古老的算術的推廣和發展。
代數式:由數和表示數的字母經有限次加、減、乘、除、乘方和開方等代數運算所得的式子,或含有字母的數學表達式稱為代數式。例如:ax+2b,-2/3,b^2/26,√a+√2等。注意: 1、不包括等於號(=、≡)、不等號(≠、≤、≥、<、>、≮、≯)、約等號≈。 2、可以有絕對值。例如:|x|,|-2.25| 等。

(詳情可以查「網路」)

『叄』 什麼是代數啊

代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和復數,以及以它們為系數的多項式的代數運算理論和方法的數學分支學科。 初等代數是更古老的算術的推廣和發展。

在古代,當算術里積累了大量的,關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,以解決各種數量關系的問題,就產生了以解方程的原理為中心問題的初等代數。
代數是由算術演變來的,這是毫無疑問的。至於什麼年代產生的代數學這門學科,就很不容易說清楚了。比如,如果你認為「代數學」是指解bx+k=0這類用符號表示的方程的技巧。這種「代數學」是在十六世紀才發展起來的。

『肆』 在數學里什麼是代數

代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和復數,以及以它們為系數的多項式的代數運算理論和方法的數學分支學科。
初等代數是更古老的算術的推廣和發展。

代數中心內容:解方程

三種數——有理數、無理數、復數
三種式——整式、分式、根式
中心內容是方程——整式方程、分式方程、根式方程和方程組。

五條基本運算律:加法交換律、加法結合律、乘法交換律、乘法結合律、分配律;
兩條等式基本性質:等式兩邊同時加上一個數,等式不變;等式兩邊同時乘以一個非零的數,等式不變;
三條指數律:同底數冪相乘,底數不變指數相加;指數的乘方,底數不變,指數相乘;積的乘方等於乘方的積。

『伍』 什麼是代數

代數是研究數、數量、關系、結構與代數方程(組)的通用解法及其性質的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及了解變數的概念和如何建立多項式並找出它們的根。代數的研究對象不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關系及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構類型有群、環、域、模、線性空間等。

『陸』 代數是什麼意思

代數是研究數、數量、關系、結構與代數方程(組)的通用解法及其性質的數學分支。

初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及了解變數的概念和如何建立多項式並找出它們的根。

代數的研究對象不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關系及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構類型有群、環、域、模、線性空間等。

(6)什麼是代數方法擴展閱讀:

代數的起源:

「代數」作為一個數學專有名詞、代表一門數學分支在我國正式使用,最早是在1859年。那年,清代數學家李善蘭和英國人韋列亞力共同翻譯了英國人棣么甘所寫的一本書,譯本的名稱就叫做《代數學》。當然,代數的內容和方法,我國古代早就產生了,比如《九章算術》中就有方程問題。

代數的起源可以追溯到古巴比倫的時代,當時的人們發展出了較之前更進步的算術系統,使其能以代數的方法來做計算。經由此系統地被使用,他們能夠列出含有未知數的方程並求解,這些問題在今日一般是使用線性方程、二次方程和不定線性方程等方法來解答的。

相對地,這一時期大多數的埃及人及西元前1世紀大多數的印度、希臘和中國等數學家則一般是以幾何方法來解答此類問題的,如在蘭德數學紙草書、繩法經、幾何原本及九章算術等書中所描述的一般。希臘在幾何上的工作,以幾何原本為其經典,提供了一個將解特定問題解答的公式廣義化成描述及解答代數方程之更一般的系統之架構。

『柒』 代數是什麼

代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和復數,以及以它們為系數的多項式的代數運算理論和方法的數學分支學科。 初等代數是更古老的算術的推廣和發展。代數是研究數、數量、關系與結構的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及了解變數的概念和如何建立多項式並找出它們的根。代數的研究對象不僅是數字,而是各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關系的集合就是一個代數結構。

『捌』 什麼是代數

代數是研究數、數量、關系、結構與代數方程(組)的通用解法及其性質的數學分支。

初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及了解變數的概念和如何建立多項式並找出它們的根。

代數的研究對象不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關系及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構類型有群、環、域、模、線性空間等。

(8)什麼是代數方法擴展閱讀

一、代數學的起源

代數學英文名稱algebra來源於9世紀阿拉伯數學家花拉子米的重要著作的名稱。該著作名為「ilm al-jabr wa'1 muqabalah」,原意是「還原與對消的科學」。

這本書傳到歐洲後,簡譯為algebra。清初曾傳入中國兩卷無作者的代數學書,被譯為《阿爾熱巴拉新法》,後改譯為《代數學》。

二、代數的介紹

在古代,當算術里積累了大量的,關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,以解決各種數量關系的問題,就產生了以解代數方程的原理為中心問題的初等代數。

代數(algebra)是由算術(arithmetic)演變來的,這是毫無疑問的。至於什麼年代產生的代數學這門學科,就很不容易說清楚了。

比如,如果你認為「代數學」是指解bx+k=0這類用符號表示的代數方程的技巧。這種「代數學」是在十六世紀才發展起來的。

參考資料來源:網路-代數

『玖』 數學中的代數方法和幾何方法有什麼區別

代數方法是指使用方程,數列等去建立數學模型解決問題。通俗點說是數的變換。幾何嘛,通過圖形,幾何證明來解決問題。通俗點就是畫圖......

『拾』 什麼是代數思想方法

代數思想方法就是學生運用字母來代替具體數值進行思考的思維形式。

閱讀全文

與什麼是代數方法相關的資料

熱點內容
貼地板方法視頻 瀏覽:169
84消毒液漂洗衣服使用方法如何 瀏覽:182
哺乳期牙齦的最佳止痛方法 瀏覽:582
女士手鏈編織方法步驟 瀏覽:112
痤瘡中西醫的治療方法 瀏覽:22
華為自定義視頻鈴聲怎麼設置在哪裡設置方法 瀏覽:192
雙壁波紋管承插口連接方法 瀏覽:836
試紙的使用方法視頻 瀏覽:455
駕駛室起火的原因及解決方法 瀏覽:72
如何區分指甲和血線正確方法 瀏覽:635
眼皮快速消腫的方法 瀏覽:301
酒精中甲醇檢測方法大連 瀏覽:332
哪些獲取aed的方法 瀏覽:108
根號下的計算方法圖片 瀏覽:483
有什麼方法可以抽上好 瀏覽:701
歐文訓練方法 瀏覽:628
坐標轉換度帶計算方法 瀏覽:801
衣服種植袋製作方法 瀏覽:529
外牆瓷磚漏水解決方法 瀏覽:890
怎麼確定定價方法 瀏覽:388