導航:首頁 > 研究方法 > 含鐵分析方法

含鐵分析方法

發布時間:2022-04-16 08:26:27

㈠ 水中鐵離子的測定方法有什麼

1.
水中鐵含量的測定方法:
〔實驗原理〕
常以總鐵量(mg/l)來表示水中鐵的含量。測定時可以用硫氰酸鉀比色法。
fe3++3scn-=fe(scn)3(紅色)

〔實驗操作〕
1.准備有關試劑
(1)配製硫酸鐵銨標准液
稱取0.8634
g分析純的nh4fe(so4)2·12h2o溶於盛在錐形瓶中的50
ml蒸餾水中,加入20
ml
98%的濃硫酸,振盪混勻後加熱,片刻後逐滴加入0.2
mol/l的kmno4溶液,每加1滴都充分振盪混勻,直至溶液呈微紅色為止。將溶液注入l
000
ml的容量瓶,加入蒸餾水稀釋至l
000
ml。此溶液含鐵量為0.1
mg/ml。
(2)配製硫氰酸鉀溶液
稱取50
g分析純的硫氰酸鉀晶體,溶於50
ml蒸餾水中,過濾後備用。
(3)配製硝酸溶液
取密度為1.42
g/cm3的化學純的硝酸191
ml慢慢加入200
ml蒸餾水中,邊加邊攪拌,然後用容量瓶稀釋至500
ml。
2.配製標准比色液
取六支同規格的50
ml比色管,分別加入0.1
ml、0.2
ml、0.5
ml、1.0
ml、2.0
ml、4.0
ml硫酸鐵銨標准液,加蒸餾水稀釋至40
ml後再加5
ml硝酸溶液和1滴2
mol/l
kmno4溶液,稀釋至50
ml,最後加入l
ml硫氰酸鉀溶液混勻,放在比色架上作比色用。
3.測定水樣的含鐵總量
取水樣40
ml裝入潔凈的錐形瓶中,加入5
ml硝酸溶液並加熱煮沸數分鍾。冷卻後傾入與標准比色液所用相同規格的比色管中,用蒸餾水稀釋至50
ml處,最後加入1
ml硫氰酸鉀溶液,混勻後與上列比色管比色,得出結果後用下式進行計算並得到結論。
式中「相當的硫酸鐵銨標准液量」指的是配製標准比色液時所用的硫酸鐵銨標准液的體積。

㈡ 任務鐵礦石分析方法的選擇

任務描述

在岩石礦物分析工作中,元素及其化合物的掩蔽、分離和測定都是以它們的分析化學性質為基礎的。所以,討論和研究它們的分析化學性質是極其必要的。本任務對鐵的化學性質、鐵礦石的分解方法、鐵的分析方法選用等進行了闡述。通過本任務的學習,知道鐵的化學性質,能根據礦石的特性、分析項目的要求及干擾元素的分離等情況選擇適當的分解方法,學會基於被測試樣中鐵含量的高低以及對分析結果准確度的要求不同而選用適當的分析方法,能正確填寫樣品流轉單。

任務分析

一、鐵在自然界的存在

鐵在自然界(地殼)分布很廣,也是最常用的金屬,約佔地殼質量的5.1%,居元素分布序列中的第四位,僅次於氧、硅和鋁。它的最大用途是用於煉鋼;也大量用來製造鑄鐵和煅鐵。鐵和其化合物還用作磁鐵、染料(墨水、藍曬圖紙、胭脂顏料)和磨料(紅鐵粉)。但由於鐵很容易與其他元素化合而成各種鐵礦物(化合物)存在,所以地殼中很少有天然純鐵存在。我們所說的鐵礦石是指在現代技術條件下能冶煉出鐵來而又經濟的鐵礦物。

鐵礦石從主要成分上劃分至少可以分為:赤鐵礦,主要有效成分Fe2O3;褐鐵礦,主要有效成分mFe2O3·nH2O;磁鐵礦,主要有效成分Fe3O4;菱(黃)鐵礦,主要有效成分FeCO3(Fe2S3);純鐵礦,主要有效成分單質鐵;以及上述礦藏的混生礦或與其他黑色金屬的伴生礦。鐵精礦中鐵的含量(品位)大小直接決定著鐵的產量,所以生產中特別注重鐵礦石的含量。鐵精礦中鐵含量的大小的主要測定方法有EDTA配位滴定法、重鉻酸鉀容量法。鐵礦石中全鐵含量的測定,目前國內外主要採用重鉻酸鉀容量法。

二、鐵的分析化學性質

(一)鐵的化學性質簡述

鐵(Fe),原子序數26,相對原子質量55.847,鐵的密度為7.9g/cm3,鐵有多種同素異形體,如α鐵、β鐵、γ鐵、σ鐵等。鐵是比較活潑的金屬,在金屬活動順序表裡排在氫的前面。常溫時,鐵在乾燥的空氣里不易與氧、硫、氯等非金屬單質起反應,在高溫時,則劇烈反應。鐵在氧氣中燃燒,生成Fe3O4,熾熱的鐵和水蒸氣起反應也生成Fe3O4。鐵易溶於稀的無機酸和濃鹽酸中,生成二價鐵鹽,並放出氫氣。在常溫下遇濃硫酸或濃硝酸時,表面生成一層氧化物保護膜,使鐵「鈍化」,故可用鐵製品盛裝濃硫酸或濃硝酸。鐵是一變價元素,常見價態為+2價和+3價。鐵與鹽酸、稀硫酸等反應時失去兩個電子,成為+2價。與Cl2、Br2、硝酸及熱濃硫酸反應,則被氧化成Fe3+。鐵與氧氣或水蒸氣反應生成的Fe3O4,可以看成是FeO·Fe2O3,其中有1/3的Fe為+2價,另2/3為+3價。鐵的+3價化合物較為穩定。鐵的化合物主要有兩大類:亞鐵Fe(Ⅱ)和正鐵Fe(Ⅲ)化合物,亞鐵化合物有氧化亞鐵(FeO)、氯化亞鐵(FeCl2)、硫酸亞鐵(FeSO4)、氫氧化亞鐵[Fe(OH)2]等;正鐵化合物有三氧化二鐵(Fe2O3)、三氯化鐵(FeCl3)、硫酸鐵[Fe2(SO43]、氫氧化鐵[Fe(OH)3]等。

Fe2+呈淡綠色,在鹼性溶液中易被氧化成Fe3+。Fe3+的顏色隨水解程度的增大而由黃色經橙色變到棕色。純凈的Fe3+為淡紫色。Fe2+和Fe3+均易與無機或有機配位體形成穩定的配位化合物。

(二)亞鐵的氧化還原性質

在鹼性溶液中亞鐵極易被氧化,空氣中的氧就可以將其氧化為Fe3+

4Fe(OH)2+O2+2H2O→4Fe(OH)3

與此同時,有少量的亞鐵還可發生歧化作用而形成Fe3+和Fe0。亞鐵鹽在中性溶液中被空氣中的氧氧化時,其速度遠較在酸性溶液中為快,在醇溶液中其氧化速度較在水溶液中為快;在反應過程中,pH、溫度及鹽類等條件對反應均有影響。反應結果往往有鹼式鹽生成:

4Fe2++O2+2Cl-→2FeOCl+2Fe3+

在酸性溶液中的亞鐵比在鹼性或中性溶液中穩定得多。氫離子濃度越大,其氧化反應越不容易進行。因此,要氧化酸性溶液中的亞鐵成為Fe3+,必須採用相當強的氧化劑。許多具有強氧化性的含氧酸鹽,如高錳酸鹽、重鉻酸鹽、釩酸鹽、氯酸鹽、高氯酸鹽等,均可在酸性環境中氧化亞鐵為氧化鐵。其中高錳酸鹽、重鉻酸鹽等可配成標准溶液直接滴定亞鐵。

(三)三價鐵的氧化還原性質

三價鐵是鐵的最穩定狀態。在酸性溶液中,三價鐵是緩和的氧化劑,一般情況下只有較強的還原劑才能將它還原。這些還原劑有硫化氫、硫代硫酸鈉、亞硫酸鈉、氯化亞錫、碘化鉀、亞鈦鹽、亞汞鹽、金屬鋅或鋁以及一些有機還原劑如鹽酸羥胺、抗壞血酸、硫脲等。其中硫酸亞鈦、硝酸亞汞可用來直接滴定三價鐵,氯化亞錫在鐵的容量法中的應用亦為大家所熟知。

(四)鐵的配位性質

1.鐵的無機配合物

三價鐵和亞鐵的硫酸鹽都可與硫酸鹽或硫酸銨形成復鹽。其中最重要的是(NH42SO4·FeSO4·6H2O。此復鹽的亞鐵的穩定性較大,在分析中可用它來配製亞鐵的標准溶液。三價鐵的復鹽中,鐵銨釩(NH4Fe(SO42·12H2O)也常被用來配製三價鐵的標准溶液。

鐵離子和亞鐵離子可分別與氟離子、氯離子形成配位數不同的多種配合物。分析中常利用[FeF63-配離子的形成以掩蔽Fe3+,在鹽酸溶液中Fe3+與Cl-形成的配離子為黃色,可藉以粗略判定溶液中Fe3+的存在。

鐵離子與硫氰酸根離子形成深紅色配合物。此反應可用於Fe3+的定性分析和比色法測定。

在過量磷酸根離子存在下,鐵離子可形成穩定的無色配離子,在分析中可藉此掩蔽Fe3+。此外,在用磷酸分解鐵礦石的過程中,也利用了三價鐵與磷酸根離子形成穩定配合物的反應。

2.鐵的有機配合物

EDTA與三價鐵的配位反應應用十分廣泛。亞鐵的EDTA配合物不如三價鐵的EDTA配合物穩定,因此在分析中主要應用三價鐵與EDTA的配位反應以掩蔽Fe3+或進行容量法測定。

鄰啡羅啉與亞鐵離子形成較穩定的紅色配合物,反應的靈敏度很高,可用於亞鐵的分光光度法測定。

其他的許多配位劑,如銅試劑、三乙醇胺、檸檬酸鹽、酒石酸鹽等與三價鐵離子形成配合物的反應,在分離、掩蔽中都有應用。

三、鐵礦石的分解方法

鐵礦石的分解,通常採用酸分解和鹼性熔劑熔融的方法。酸分解時,常用以下幾種方法:

(1)鹽酸分解:鐵礦石一般能為鹽酸加熱分解,含鐵的硅酸鹽難溶於鹽酸,可加少許氫氟酸或氟化銨使試樣分解完全。磁鐵礦溶解的速度很慢,可加幾滴氯化亞錫溶液,使分解速度加快。

(2)硫酸-氫氟酸分解:試樣在鉑坩堝或塑料坩堝中,加1∶1 硫酸10 滴、氫氟酸4~5mL,低溫加熱,待冒出三氧化硫白煙後,用鹽酸提取。

(3)磷酸或硫-磷混合酸分解:溶礦時需加熱至水分完全蒸發並出現三氧化硫白煙後,再加熱數分鍾。但應注意加熱時間不能過長,以防止生成焦磷酸鹽。

目前採用鹼性熔劑熔融分解試樣較為普遍。常用的熔劑有碳酸鈉、過氧化鈉、氫氧化鈉和氫氧化鉀等在銀坩堝、鎳坩堝或高鋁坩堝中熔融。用碳酸鈉直接在鉑坩堝中熔融,由於鐵礦中含大量鐵會損害坩堝,同時鉑的存在會影響鐵的測定,所以很少採用。

在實際應用中,應根據礦石的特性、分析項目的要求及干擾元素的分離等情況選擇適當的分解方法。對於含有硫化物和有機物的鐵礦石,應將試樣預先在550~600℃溫度下灼燒以除去硫及有機物,然後以鹽酸分解,並加入少量硝酸,使試樣分解完全。

四、鐵的分析方法

(一)重鉻酸鉀容量法

(1)無汞重鉻酸鉀容量法:試樣用硫酸-磷酸混酸溶解,加入鹽酸在熱沸狀態下用氯化亞錫還原大部分三價鐵。在冷溶液中以鎢酸鈉為指示劑,滴加三氯化鈦還原剩餘三價鐵,並稍過量,在二氧化碳氣體保護下,用重鉻酸鉀氧化過量三氯化鈦,以二苯胺磺酸鈉為指示劑,用重鉻酸鉀標准溶液滴定到終點。根據消耗的重鉻酸鉀標准溶液的體積計算試樣中全鐵百分含量。

(2)有汞重鉻酸鉀容量法:在酸性溶液中,用氯化亞錫將三價鐵還原為二價鐵,加入氯化汞以除去過量的氯化亞錫,以二苯胺磺酸鈉為指示劑,用重鉻酸鉀標准溶液滴定至紫色。反應方程式:

岩石礦物分析

岩石礦物分析

岩石礦物分析

經典的重鉻酸鉀法測定鐵時,採用氯化亞錫將溶液中的Fe3+還原為Fe2+。然後用氯化汞除去過量的氯化亞錫,汞鹽會造成污染,因此中國在20世紀60年代以來發展了「不用汞鹽的測鐵法」。

(二)EDTA配位滴定法

鐵礦石經濃鹽酸溶解,低溫加熱直至溶解完全後冷卻,加水將溶液稀釋至一定濃度,再加入硝酸和氨水調節溶液pH=1.8~2,以磺基水楊酸為指示劑,用EDTA標液滴定,終點由紫紅色變為亮黃色。

本法與經典法對鐵礦石中全鐵量測試結果准確度、精密度是一致的,本法可以避免因為加入HgCl2溶液而造成環境污染,有害於人的身體健康的弊病,且本法操作比經典法簡便,完全可以採用。

(三)鄰啡羅啉比色法

以鹽酸羥胺為還原劑,將三價鐵還原為二價鐵,在pH=2~9的范圍內,二價鐵與鄰啡羅啉反應生成橙紅色的配合物[Fe(Cl2H8N232+,藉此進行比色測定。其反應如下:

4FeCl3+2NH2OH·HCl→4FeCl2+N2O+6HCl+H2O

Fe2++3Cl2H8N2→[Fe(Cl2H8N232+(橙紅色)

這種反應對Fe2+很靈敏,形成的顏色至少可以保持15天不變。當溶液中有大量鈣和磷時,反應酸度應大些,以防CaHPO4·2 H2O沉澱的形成。在顯色溶液中鐵的含量在0.1~6mg/mL時符合Beer定律,波長530 nm。

(四)原子吸收光譜法

利用鐵空心陰極燈發出的鐵的特徵譜線的輻射,通過含鐵試樣所產生的原子蒸汽時,被蒸汽中鐵元素的基態原子所吸收,由輻射特徵譜線光被減弱的程度來測定試樣中鐵元素的含量。鐵的最靈敏吸收線波長為248.3nm,測定下限可達0.01mg/mL(Fe),最佳測定濃度范圍為2~20mg/mL(Fe)。

(五)X射線熒光分析法

X射線熒光光譜分析法具有分析速度快、試樣加工相對簡單、偶然誤差小及分析精度高的特點,已廣泛應用於各種原材料的分析中,並逐步應用於鐵礦石的分析中。但由於鐵礦石成分非常復雜,主成分含量較高,變化范圍大,使基體變化大,對X射線熒光分析造成不利影響,致使在用通常壓片法進行鐵礦石分析時,其准確度不如化學法高。採用玻璃熔片法對樣品進行熔融稀釋處理,可以有效地消除熒光分析中的基體效應,提高熒光分析的准確度。

X射線熒光分析法的優點之一是各元素的特徵譜線數量少。測定鐵通常選用的是Kα線,其波長為1.93Å(1Å=0.1nm)。

五、鐵礦石的分析任務及其分析方法的選擇

基於被測試樣中鐵含量的高低不同以及對分析結果准確度的要求不同,可採用的測定方法有很多。目前,岩石礦物試樣中高含量鐵的測定主要採用容量分析法。其中重鉻酸鉀容量法應用最廣泛。此外,以氧化還原反應為基礎的測定鐵的容量法還有高錳酸鉀法、鈰量法、碘量法、硝酸亞汞法以及鈦量法等。以配位反應為基礎的容量法中較常採用的是EDTA法。試樣中低含量鐵的測定,常用的有磺基水楊酸分光光度法和鄰菲羅啉分光光度法以及原子吸收分光光度法。X射線熒光分析法也已用於岩石礦物試樣中鐵的測定。

氯化亞錫還原-重鉻酸鉀容量法具有穩定、准確、簡易、快速等許多優點,但由於使用了劇毒的氯化汞,嚴重污染環境,危害人體健康。為了避免使用汞鹽,近年來常採用氯化亞錫、三氯化鈦聯合還原-重鉻酸鉀容量法。原子吸收法操作簡單、快速,結果的精密度、准確度高,但鐵的光譜線較復雜,例如,在鐵線248.3 nm附近還有248.8 nm線;為克服光譜干擾,應選擇最小的狹縫或光譜帶。

鄰菲羅啉能與某些金屬離子形成有色配合物而干擾測定。但在乙酸-乙酸銨的緩沖溶液中,不大於鐵濃度10倍的銅、鋅、鈷、鉻及小於2mg/L的鎳,不幹擾測定,當濃度再高時,可加入過量顯色劑予以消除。

技能訓練

實戰訓練

1.實訓時按每小組5~8人分成幾個小組。

2.每個小組進行角色扮演,利用所學知識並上網查詢相關資料,完成鐵礦石委託樣品從樣品驗收到派發樣品檢驗單工作。

3.填寫附錄一中表格1和表格2。

㈢ 礦物成分分析方法

礦物化學成分的分析方法有常規化學分析,電子探針分析,原子吸收光譜、激光光譜、X射線熒光光譜,等離子光譜和極譜分析,中子活化分析及等離子質譜分析等。

在選擇成分分析方法時,應注意檢測下限和精密度。

檢測下限(又稱相對靈敏度)指分析方法在某一確定條件下能夠可靠地檢測出樣品中元素的最低含量。顯然,檢測下限與不同的分析方法或同一分析方法使用不同的分析程序有關。

精密度(又稱再現性或重現性)指某一樣品在相同條件下多次觀測,各數據彼此接近的程度。通常用兩次分析值(C1和C2)的相對誤差來衡量分析數值的精密度。即

相對誤差RE=

×100%

常量元素(含量大於或等於0.1%)分析中,根據要求達到分析相對誤差的大小,對分析數據的精密度作如下劃分:

定量分析:RE<±5%近似定量分析:RE<±(5~20)%

半定量分析:RE=(20~50)%

定性分析:RE>±100%

定量分析要求主要是對常量組分測定而言的,微量組分測定要達到小於±5%的相對誤差則比較困難。

1.化學分析法

化學分析方法是以化學反應定律為基礎,對樣品的化學組成進行定性和定量的系統分析。由於化學分析通常是在溶液中進行化學反應的分析方法,故又稱「濕法分析」。它包括重量法、容量法和比色法。前兩者是經典的分析方法,檢測下限較高,只適用於常量組分的測定;比色法由於應用了分離、富集技術及高靈敏顯色劑,可用於部分微量元素的測定。

化學分析法的特點是精度高,但周期長,樣品用量較大,不適宜大量樣品快速分析。

2.電子探針分析法

電子探針X射線顯微分析儀,簡稱電子探針(EMPA)。它是通過聚焦得很細的高能量電子束(1μm左右)轟擊樣品表面,用X射線分光譜儀測量其產生的特徵X射線的波長與強度,或用半導體探測器的能量色散方法,對樣品上被測的微小區域所含的元素進行定性和定量分析。樣品無論是顆粒,還是薄片、光片,都可以進行非破壞性的分析。

電子探針的主體由電子光學系統、光學顯微鏡、X射線分光譜儀和圖像顯示系統4大部分組成。此外,還配有真空系統、自動記錄系統及樣品台等(圖24-3)。其中測定樣品成分的可分為X射線波譜儀和X射線能譜儀,過去電子探針只採用前者,因為它解析度高,精度高,但速度慢。現代新型電子探針一般兩者皆用。能譜分析方法可做多元素的快速定性和定量分析,但精度較前者差。

圖24-3 電子探針結構示意圖

電子探針可測量元素的范圍為4Be—92U。靈敏度按統計觀點估計達十萬分之三,實際上,其相對靈敏度接近萬分之一至萬分之五。一般分析區內某元素的含量達10-14就可感知。測定直徑一般最小為1μm,最大為500μm。它不僅能定點作定性或定量分析,還可以作線掃描和面掃描來研究元素的含量和存在形式。線掃描是電子束沿直線方向掃描,測定幾種元素在該直線方向上相對濃度的變化(稱濃度分布曲線)。面掃描是電子束在樣品表面掃描,即可在熒屏上直接觀察並拍攝到該元素的種類、分布和含量(照片中白色亮點的稠密程度表示元素的濃度)。目前,電子探針已卓有成效地應用於礦物的成分分析、鑒定和研究等各個方面。

值得注意的是,電子探針一個點的分析值只能代表該微區的成分,並不是整個礦物顆粒的成分,更不能用來代表某工作區該礦物的總體成分。因為在礦物中元素的分布是不均一的,不能「以點代面」。對微米級不均勻的礦物,只有採用適當的多點測量,以重現率高的點為依據討論礦物成分的特徵和變化,才能得到較可靠的認識。此外,電子探針對查明混入元素在礦物中存在形式的能力是有限的。它能分析已構成足夠大小的礦物相的機械混入物,而對以類質同象混入物形式存在的元素,電子探針是無能為力的。要解決這個問題,必須用綜合的手段。應當指出,根據在電子探針面掃描圖像上,將分布均勻的混入元素視為類質同象混入物的依據是不夠充分的,因為混入元素的均勻分布,並不都是因為呈類質同象形式所引起,還可以由固溶體分解而高度離散所致。而現代電子探針的解析度(約7.0μm),還不能區分它們,需要用高分辨的透射電鏡(解析度達0.5~1nm,相當於2~3個單位晶胞)、紅外光譜分析、X射線結構分析等方法相互配合,才能解決混入元素在礦物中存在的形式問題。

電子探針分析法對發現和鑒定新礦物種屬起了重要的作用。這是由於電子探針在微區測試方面具有特效,因而對於難以分選的細小礦物進行鑒定和分析提供了有利條件。如對一些細微的鉑族元素礦物、細小硫化物、硒化物、碲化物的鑒定都很有成效。

電子探針也有它的局限性。例如,它不能直接測定水(H2O,OH)的含量;對Fe只能測定總含量,不能分別測出Fe2+和Fe3+含量等。

電子探針分析的樣品必須是導電體。若試樣為不導電物質,則需將樣品置於真空噴塗裝置上塗上一薄層導電物質(碳膜或金膜),但這樣往往會產生難於避免的分析誤差,同時也影響正確尋找預定的分析位置。樣品表面必需盡量平坦和光滑,未經磨光的樣品最多隻能取得定性分析資料,因為樣品表面不平,會導致電子激發樣品產生的X射線被樣品凸起部分所阻擋,所得X射線強度會減低,影響分析的精度。

3.光譜類分析法

光譜類分析法是應用各種光譜儀檢測樣品中元素含量的方法。此類分析方法很多,目前我國以使用發射光譜分析(ES)、原子吸收光譜分析(AA)、X射線熒光光譜分析(XRF)和電感耦合等離子發射光譜(ICP)、原子熒光光譜(AF)、極譜(POL)等較為普遍。它們的特點是靈敏、快速、檢測下限低、樣品用量少。適於檢測樣品中的微量元素,對含量大於3%者精度不夠高。

光譜分析的基本原理概括起來是:利用某種試劑或能量(熱、電、粒子能等)對樣品施加作用使之發生反應,如產生顏色、發光、產生電位或電流或發射粒子等,再用光電池、敏感膜、閃爍計數器等敏感元件接收這些反應訊號,經電路放大、運算,顯示成肉眼可見的訊號。感光板、表頭、數字顯示器、熒光屏或列印機等都是顯示輸出裝置。光譜分析的流程見圖24-4。

圖24-4 光譜分析流程圖

4.X射線光電子能譜分析法

X射線光電子能譜儀由激發源、能量分析器和電子檢測器(探測器)三部分組成。其工作原理是:當具有一定能量hv的入射光子與樣品中的原子相互作用時,單個光子把全部能量交給原子中某殼層上一個受束縛的電子,這個電子因此獲得能量hv。如果hv大於該電子的結合能Eb,該電子就將脫離原來的能級。若還有多餘能量可以使電子克服功函數ϕ,電子將從原子中發射出去,成為自由電子。由入射光子與原子作用產生光電子的過程稱光電效應。只有固體表面產生的光電子能逸出並被探測到。所以光電子能譜所獲得的是固體表面的信息(0.5~5nm)。

光電過程存在如下的能量關系:

hv=Eb+Ek+Er

式中:Er為原子的反沖能;Eb為電子結合能;Ek為發射光電子的動能。Er與X射線源及受激原子的原子序數有關(隨原子序數的增大而減小),一般都很小,從而可以忽略不計。Ek可實際測得,hv為X射線的能量,是已知的。因此從上式可算出電子在原子中各能級的結合能(結合能是指一束縛電子從所在能級轉移到不受原子核吸引並處於最低能態時所需克服的能量)。光電子能譜就是通過對結合能的計算並研究其變化規律來了解被測樣品的元素成分的。

X射線光電子能譜儀可用於測定固、液、氣體樣品除H以外的全部元素,樣品用量少(10-8g),靈敏度高達10-18g,相對精度為1%,特別適於做痕量元素的分析,而且一次實驗可以完成全部或大部分元素的測定,還可選擇不同的X射線源,求得不同電子軌道上的電子結合能,研究化合物的化學鍵和電荷分布等,還可測定同一種元素的不同種價態的含量。

5.電感耦合等離子質譜分析法

電感耦合等離子體質譜(Inctively Coupled Plasma Mass Spectrometry,簡稱ICP-MS)技術是1980年代發展起來的、將等離子體的高溫(8000K)電離特性與四極桿質譜計的靈敏快速掃描優點相結合而形成的一種新型的元素和同位素分析技術。

ICP-MS的工作原理及其分析特性:在 ICP-MS 中,等離子體作為質譜的高溫離子源(7000K),樣品在通道中進行蒸發、解離、原子化、電離等過程。離子通過樣品錐介面和離子傳輸系統進入高真空的四極快速掃描質譜儀,通過高速順序掃描分離測定所有離子,掃描元素質量數范圍從6到260,並通過高速雙通道分離後的離子進行檢測,直接測定的濃度范圍從10-12到10-6。因此,與傳統無機分析技術相比,ICP-MS技術提供了最低的檢出限、最寬的可測濃度范圍,具有干擾最少、分析精密度高、分析速度快、可進行多元素同時測定以及可提供精確的同位素信息等分析特性。

ICP-MS的譜線簡單,檢測模式靈活多樣,主要應用有:①通過譜線的質荷之比進行定性分析;②通過譜線全掃描測定所有元素的大致濃度范圍,即半定量分析,不需要標准溶液,多數元素測定誤差小於20%;③用標准溶液校正而進行定量分析,這是在日常分析工作中應用最為廣泛的功能;④利用ICP-MS測定同位素比值。

在礦物研究方面的應用有:礦物稀土、稀散以及痕量、超痕量元素分析;鉑族元素分析;溴、碘等非金屬元素的分析;同位素比值分析;激光剝蝕固體微區分析等。

6.穆斯堡爾譜

穆斯堡爾譜為一種核γ射線共振吸收譜。產生這種效應的約有40多種元素、70多種同位素。目前得到廣泛應用的是57Fe和119Sn。

圖24-5 某透閃石石棉的穆斯堡爾圖譜

由於地殼中鐵的分布相當廣泛,很多礦物都含鐵,因此鐵的穆斯堡爾譜已成為礦物學研究中一個重要課題。應用這種方法可以測定晶體結構中鐵的氧化態、配位以及在不同位置上的分布等。圖24-5 為某一透閃石石棉的穆斯堡爾譜,圖中顯示了 Fe2+離子在兩種八面體配位位置M1和M2中的分配情況,AA′雙峰表示M1位的Fe2+,CC′雙峰表示M2位的Fe2+

穆斯堡爾譜技術可鑒定鐵、錫礦物種類;確定礦物中鐵、錫的氧化態(如 Fe3+,Fe2+含量及比值)、電子組態(如低自旋、高自旋)、配位狀態及化學鍵;確定鐵、錫離子的有序度、類質同象置換及含鐵、錫礦物的同質多象變體;進而探討不同溫壓下礦物的相轉變過程。

穆斯堡爾技術目前還不太成熟,通常要求低溫工作條件,可測的元素種類不多,譜線解釋理論也不夠完善,但卻是礦物學研究中一個很有遠景的新技術。

㈣ 檢驗鐵離子的方法是什麼

鐵離子的檢驗方法:

1、加入氫氧化鈉溶液,生成白色沉澱,白色沉澱迅速變成灰綠色,最後,變成紅褐色,這證明有鐵離子。

2、向溶液中加入酸性高錳酸鉀,若褪色,亞鐵離子,不褪色,則為鐵離子。

3、向溶液中加入醋酸鈉,由於亞鐵離子遇醋酸鈉無現象,而鐵離子則發生雙水解,產生沉澱,再結合。

鐵離子化學性質:

鐵離子的氧化性是大於銅離子的,而鐵單質可以還原銅離子,自然更能還原鐵離子了。還原性從大到小:K、Ca、Na、Mg、Al、Zn、Fe、Sn、Pb、H、Cu、Hg、Ag、Pt、Au。

氧化性從小到大:K+、Ca2+、Na+、Mg2+、Al3+、Zn2+、Fe2+、Sn4+、Pb2+、H+、Cu2+、Fe3+、Hg+、Ag+,其實這是按照金屬活動性順序排列的。(註:Pt、Au很穩定,一般很難形成對應的離子)

以上內容參考網路—鐵離子

㈤ 怎樣測量土壤中的含鐵量

1 取土樣
2 選方法,最常用的是用重鉻酸鉀氧化二價鐵的氧化還原滴定法,或者電位滴定法
3 根據所選的方法,除去干擾測定的離子和物質 ,加入維生素C或者鹽酸羥胺把所有鐵都還原為 Fe2+
4 滴定分析,多次測定取平均值。

怎麼樣測菠菜的含鐵量

物理方法:

把菠菜定量研磨,配成溶液,採用原子吸收儀是最快速,最准確的方法,陰極燈用鐵燈。

還可以採用鐵離子濃度比色計。

化學方法:

鐵離子在pH 為1~3 范圍內能與EDTA 定量絡合,借磺基水楊酸為顏色指示劑,以EDTA 標定菠菜配置的溶液即可得出非常准確的鐵元素含量。但是如果鐵離子與絡合能力更強的物質結合在一起,不能為EDTA奪取出來則必須使用原子吸收儀。

㈦ 鐵離子測定方法

鐵離子定量測定方法有國標3049,在網上能查到。鋁離子的測定要看溶液成分了。干擾挻多的。

㈧ 怎麼測金屬硅塊的含鐵量

首先,硅算不上是金屬。硅的性質比較穩定,可以用酸溶解樣品,配成溶液,然後用原子吸收儀測定,這是最快速,最准確的方法,陰極燈用鐵燈。
還可以用化學方法,如下:用酸溶解樣品,配成溶液,鐵離子在pH 為1~3 范圍內能與EDTA 定量絡合,借磺基水楊酸為顏色指示劑,以EDTA標定溶液即可得出非常准確的鐵元素含量。但是如果鐵離子與絡合能力更強的物質結合在一起,不能為EDTA奪取出來就只有使用原子吸收了。

閱讀全文

與含鐵分析方法相關的資料

熱點內容
貼地板方法視頻 瀏覽:169
84消毒液漂洗衣服使用方法如何 瀏覽:182
哺乳期牙齦的最佳止痛方法 瀏覽:582
女士手鏈編織方法步驟 瀏覽:112
痤瘡中西醫的治療方法 瀏覽:22
華為自定義視頻鈴聲怎麼設置在哪裡設置方法 瀏覽:192
雙壁波紋管承插口連接方法 瀏覽:836
試紙的使用方法視頻 瀏覽:455
駕駛室起火的原因及解決方法 瀏覽:72
如何區分指甲和血線正確方法 瀏覽:635
眼皮快速消腫的方法 瀏覽:301
酒精中甲醇檢測方法大連 瀏覽:332
哪些獲取aed的方法 瀏覽:108
根號下的計算方法圖片 瀏覽:483
有什麼方法可以抽上好 瀏覽:701
歐文訓練方法 瀏覽:628
坐標轉換度帶計算方法 瀏覽:801
衣服種植袋製作方法 瀏覽:529
外牆瓷磚漏水解決方法 瀏覽:890
怎麼確定定價方法 瀏覽:388