A. 河南一老師帶全班穿古裝上數學課,老師為什麼要這么做
河南一老師帶全班學生穿古裝上數學課。數學老師之所以這么做,是想讓學生能夠通過穿古裝的形式,感受古代的數學文化。同時,這樣教學能讓學生感受古代人的思想和數學文化的博大精深,增加學生對數學課的興趣和探索。
1.教學形式新穎
老師讓學生穿古裝上數學課,這樣的教學形式很新穎。一方面,一改傳統的教學模式,豐富了學生的課堂體驗;另一方面,能夠開拓學生的學習興趣,激發學生對學習的積極性和探索性。再者,學生穿漢服上課,自身的儀式感會更強,彷彿置身於古代的數學文化課程中。
數學教學中有哪些教學方法
「瓜傻式」教學法----將數學那種嚴密的邏輯演繹過程還原為生動活潑的知識生成過程。通過讓學生了解所學的數學知識的現實背景,感知知識的的產生過程。掌握解決問題的思路,知道思路的形成過程,這種方法,可以極大激發孩子們的求知慾和創作欲。使枯燥干澀的數學概念演繹變得生動起來。
自主探索式學習----重點在於學生親自體驗學習過程 , 其價值與其說是學生發現 結論 , 不如說更看重學生的探索過程。自主探索式學習重視讓每個學生根據自己的體 驗 , 通過觀察、實驗、猜想、驗證、推理等方式自由地、開放地去探究、去發現、去 「 再創造 」 有關數學問題口在這個過程中 , 學生不僅獲得了必要的數學知識和技能 , 還對數學 知識的形成過程有所了解 , 特別是體驗和學習數學的思考方法和數學的價值。
合作學習----小學數學教學中經常被採用的形式。但目前小組合作學習效益高的較少 , 有的只是流於形式。有的研究者認為 , 小組學習有獨立型、競爭型、依賴型、依存 型等幾種類型。目前我們用得較多的是學生獨立學習後相互交流 , 真正意義上的合 作一一相互依存地來研究或者共同解決一個問題還太少。
「實踐活動」的教學方法----通過實踐活動,培養學生的創新精神和實踐能力,發掘學生潛能,讓學生學有用的數學知識。
……
無論是「優選」還是「創新」,一般都應注意以下四點:一是教學方法的選用或創新必須符合教學規律和原則;二是必須依據教學內容和特點,確保教學任務的完成;三是必須符合學生的年齡、心理變化特徵和教師本身的教學風格;四是必須符合現有的教學條件和所規定的教學時間。另外,在指導思想上,教師應注意用辯證的觀點來審視各種教學方法。
正所謂「教無定法」。
常用的教學方法
進入20世紀80年代以來,伴隨著整個教學領域的深入改革,小學數學教學方法也呈現出蓬勃發展的勢頭。廣大的小學數學教師和教學研究人員,一方面對我國傳統的小學數學教學方法進行大膽的完善與改造,一方面積極地引進國外先進的教學方法,使我國新的教學方法,如雨後春筍,競相涌現。
一、小學數學新教學方法介紹
(一)發現法
發現法是由美國當代著名教育家、認知心理學家布魯納50年代至60年代初所倡導的一種教學方法。
1、發現法的基本含義及特點
發現法是指教師不直接把現成的知識傳授給學生,而是引導學生根據教師和教科書提供的課題與材料,積極主動地思考,獨立地發現相應的問題和法則的一種教學方法。
發現法與其他教學方法相比較,有以下幾個特點:
(1)發現法強調學生是發現者,讓學生自己去獨立發現、去認識,自己求出問題的答案,而不是教師把現成的結論提供給學生,使學生成為被動的吸收者。
(2)發現法強調學生內在學習動機的作用。學生最好的學習動機莫過於他們對所學課程具有內在的興趣。發現法符合兒童好玩、好動、好問和喜歡追根求源的心理特點,遇到新奇、復雜的問題,他們就會積極地去探索。教師在教學中充分利用這一特點,利用新奇、疑難和矛盾等引發學生的思維沖突,促使他們產生強烈的求知慾望,主動地去探究和解決問題,改變了以往傳統教學法僅利用外來刺激促發學生學習的做法。
(3)發現法使教師的主導作用表現為潛在的、間接的。由於該法是讓學生運用已有的知識和教師提供的各種學習材料、直觀教具等,自己去觀察,用頭腦去分析、綜合、判斷、推理,親自去發現事物的本質規律,所以在這個過程中教師的主導作用是潛在的、間接的。
2、發現法的主要優點及其局限性
發現法有如下幾個主要優點。
(1)可以使學生學習的外部動機轉化為內部動機,增強學習的信心。
(2)有助於培養學生解決問題的能力。由於發現法經常練習怎樣解決問題,所以能使學生學會探究的方法,培養學生提出問題和解決問題的能力,以及樂於創造發明的態度。
(3)運用發現法,有助於提高學生的智慧,發揮學生的潛力,培養學生優良的思維品質。
(4)有利於學生對知識的記憶和鞏固。在發現學習的過程中,學生可就已有的知識結構進行內部改組,這種改組,可以使已有的知識結構與要學習的新知識更好的聯系起來,這種系統化和結構化的知識,就更加有助於學生的理解、鞏固和應用。
發現法也有一定的局限性。
(1)就教學效率而言,使用發現法需要花費的時間比較多。因為學生獲得知識的過程是再發現的過程,一切真理都要學生自己去獲得,或者重新發現,而不是由教師簡單地告訴學生,因此,教學過程必然經歷一個較長時間的摸索過程。
(2)就教學內容而言,它的適應是有一定范圍的。發現法比較適用於具有嚴格邏輯的數、理、化等學科,對於人文學科是不太適用的。就適用的學科而言,也是只適用於概念和前後有聯系的概括性知識的教學,如求平均數、運算定律等。而概念的名稱、符號、表示法等,仍需要由教師來講解。
(3)就教學的對象而言,它更適用於中、高年級的學生。因為發現學習必須以一定的基礎知識和經驗為發現的前提條件,因此,年級越高的學生,獨立探索的能力也就會越強。所以,並非所有的教學內容和教學對象都有必要和可能採用發現法教學。
3、發現法教學舉例(一位數除兩位數的教學)
給出一道題如39÷3。學生可先拿39個物品,每3個一份,把它們分成13份。做幾個這樣的題目後,可以讓他們把物品10個組成一組。例如,給出這樣一道題:「哈利買了4條糖果,每條有10塊。他吃了1塊,把剩下的每3塊包成一包,分給同學們,分給了幾個同學?」
學生可能有以下幾種解法:
(1)每3個分成一堆,然後數出分得的堆數。
(2)從3個10中各先拿出1個,剩下的每9個分給3個同學,再把其餘的也每3個分成一堆。
9+9+9+3+3+3+3=39(塊)
↓↓↓↓↓↓↓
3+3+3+1+1+1+1=13(人)
(3)與(2)相似,但他們看出有4個9。
9+9+9+9+3=39(塊)
↓↓↓↓↓
3+3+3+3+1=13(人)
(4)他們看出3個10正好分給10個人,剩下的每3個分成一組。
30+3+3+3=39(塊)
↓ ↓↓↓
10+1+1+1=13(人)
(5)與(4)相似,但他們看出剩下的9正好分給3個人。
30+9=39(塊)
↓ ↓
10+3=13(人)
在學生得出解法之後,全班進行討論。教師對不同的演算法不給出評價。再出一道題,許多學生會選用比他第一次用的更為簡便的方法。教師進一步提出引導性問題,促使學生找出更為有效的計算方法,形成一般的豎式計算。
(二)嘗試教學法
嘗試教學法是小學數學教學方法中一種影響比較大的教學方法。它是一種具有中國特色的教學方法。嘗試教學法是由常州市教育科學研究所的邱學華老師最早設計和提出的,經過在一些地區和全國逐步推廣,到現在已有十多年的時間,取得了很好的教學效果,甚至在國際上也有一定的影響。
1、嘗試教學法的基本內容
什麼是嘗試教學法?嘗試教學法的基本思路就是:教學過程中,不是先由教師講,而是讓學生在上知識的基礎上先來嘗試練習,在嘗試的過程中指導學生自學課本,引導學生討論,在學生嘗試練習的基礎上,教師再進行有針對性的講解。嘗試教學法的基本程序分為五個步驟:出示嘗試題;自學課本;嘗試練習;學生討論;教師講解。
嘗試教學法與普通的教學方法的根本區別就在於,改變教學過程中「先講後練」的方式,以「先練後講」的方式作為教學的主要形式。
嘗試教學法產生的背景是:在20世紀80年代初,我國教學改革已經走上了正軌,國內有許多教學改革的實驗研究。同時,也有許多國外的教學改革的經驗大量地介紹進來。在這種情況下,人們開始思考如何根據我國的教學改革的實驗,研究和創造具有中國特色的,既符合現代教育改革的需要,又具有較強的操作性的教學方法。邱學華老師多年來進行小學數學教學的研究,在「文革」前後進行了多項小學數學教學改革方面的調查與實驗,深感研究一種新的小學數學教學法的必要性。因此,他在分析和對比國內外教學改革的經驗的基礎上,提出了嘗試教學法的設想。他借鑒了中國古代的「啟發式教學」原理、發現法和自學輔導法教學的思路,綜合地分析和研究這些教學法的長處與不足,試圖形成一種獨特的,具有操作性和可行性的教學方法。
C. 中國古代的數學教育是怎麼樣的
數學作為一門應用性非常強的基礎學科,無論天文、水利、建築,乃至商業、日常生活,都須臾離不開。如果沒有相應的數學教育,中國不可能長時間在世界上保持文明的領先地位。
事實上,中國早就存在數學教學,並逐漸形成了比較系統的數學教育制度。西周時期針對貴族子弟開設的教學科目「六藝」中的「數」,便是一種早期的數學教育,而平民所學習的「小藝」中,也包含了「數」。到南北朝時期,中國數學蓬勃發展,《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作相繼問世。同時,數學教育也有較大發展,北魏在中央官學中專門開設的「算學」,可算是世界上最早開設的數學專科學校。這意味著算學被列為基本的國學之一。
隋唐時期,中國首次建立起正式的數學教育制度。隋文帝時期,中國在國子監設立了算學館,在算學館設算學
博士1人,助教2人,學生8人,並制定了專用的數學教材《算經十書》對學生進行講授。唐貞觀年間,算學教育規模進一步擴大,專門設博士2人,助教1人,學生30人,八品以下子弟以及庶人喜歡算學、年齡在14-19歲之間者都可入學,學習期限9年。
從公元11世紀到14世紀的宋元時期,是以籌算為主要工具的中國古代數學的鼎盛時期。在此期間,涌現出一批傑出的數學家和數學著作,中國數學達到最高境界,與當時的阿拉伯數學一道居於世界領先地位。而在數學教育方面,在科舉考試及太學、國子監等學校中都有專門的算學考試。14世紀中後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度削減數學內容。失去國家的政策鼓勵之後,數學教育也出現衰退,自此,中國古代數學便開始衰退,落後於世界了。
D. 數學的教學方法有哪些
有7種常用的數學教學方法:
1.講授法是一種教學方法,教師使用口語來描述情境,敘述事實,解釋概念,論證原則和澄清規則。
2..談話法又稱回答法,是通過教師和學生之間的對話傳播和學習知識的方法。其特點是教師指導學生利用現有的經驗和知識回答教師提出的問題,獲取新知識或鞏固和檢查所獲得的知識。
3.討論方法是一種方法,使整個班級或小組圍繞某個中心問題發表自己的意見和看法,共同探索,互相激勵,進行頭腦風暴和學習。
4.演示方法是一種教學方法,教師通過現代教學方法向學生展示物理或物理圖像進行觀察,或通過示範實驗,使學生獲得知識更新。它是一種輔助教學方法,通常與講座,對話,討論等結合使用。
5.練習法是學生在教師指導下鞏固知識,培養各種學習技能的基本方法。這也是學生學習過程中的一項重要實踐活動。
6.實驗法是一種教學方法,學生在教師的指導下使用某些設備和材料,通過操作引起實驗對象的某些變化,並通過觀察這些變化獲得新知識或驗證知識。一種常用於自然科學學科的方法。
7.實習是一種教學方法,學生可以使用某些實習場所,參加某些實習,掌握一定的技能和相關的直接知識,或者驗證間接知識並全面應用所學知識。
數學教學方法(methods. of mathematics teach-ing)教學方法的一種.教師指導學生學好數學基礎知識,提高數學基本技能,發展數學才能,進行思品德教育的方式、方法.它既包括了教師教的方法,也包括了學生學的方法.數學教學方法對於激發學生學習數學的興趣,實現數學教學目的,提高數學教學質量,都起著重要的作用.
遠在中國春秋末期和古希臘時期,就有講解、問答、練習、復習等方法的記載.古代主要採用講授法,近代推行了演示、觀察、實驗、參觀等新方法,並改進了解、談話等方法.近些年來隨著現代科學技術的進步,現代化教學手段的使用,教育學與心理學新成就的出現,資訊理論、控制論與系統論新學科的建立與發展,為數學教學方法的改進與發展提供了良好條件。
常用的數學教學方法有:啟發、講解、談話、練習、討論、演示、實習、觀察、復習等,其中,啟發、講解、談話、練習等用的較多.當前國內外正在實驗的數學教學方法有:發現、研究、自學輔導、程序教學、最優化教學、演算法化教學、「讀讀、議議、講講、練練」等。
E. 數學教學的四個基本原則
數學教學的四個基本原則:
一、抽象與具體相結合的原則
高度的抽象性是數學學科理論的基本特點之一。數學以現實世界的空間形式和數量關系作為研究對象,所以數學是將客觀對象的所有其他特性拋開,而只取其空間形式和數量關系進行系統的、理論的研究.因此,數學具有比其他學科更顯著的抽象性。這種抽象性還表現為高度的概括性.一般說來,數學的抽象程度越高,其概括性越強。
二、嚴謹性與量力性相結合的原則
嚴謹性是數學學科的基本特徵之一。其涵義主要是指數學邏輯的嚴格性及結論的精確性。在中學數學的理論體系中,它主要表現在以下兩個方面:其一,概念(除原始概念外)必須定義,命題(除公理外)必須證明;其二,在數學內容的安排上,要符合學科內在的邏輯結構。
三、培養「雙基」與策略創新相結合的原則
數學「雙基」就是指數學基礎知識和基本技能。數學基礎知識,即數學知識網路中的「結點」,包括中學數學中的概念、定理、公式、法則、方法等。基本技能是指與數學基礎知識相關的按照一定程序與步驟進行的操作方式,包括運算、推理、數據處理、畫圖、繪製表格等心智活動。正確理解數學概念是掌握數學知識的前提,而牢固掌握定義、性質、公理、定理、公式、法則等數學規律和解題、證題的方法,則是學好數學的必要條件。
四、精講多練與自主建構相結合的原則
精講多練是當前數學課堂教學的主要做法。精講,是針對教師講解提出的,要求教師要精選典型問題做出講解,對數學概念、定理中的關鍵點做出精闢講解。講解要少而精,要有針對性、代表性、普遍性,不搞一言堂,個別問題作個別教學。多練,是要求學生練習解題必須達到一定的數量。
(5)古代數學學科教學方法擴展閱讀:
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」。可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起。從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程與三角函數。而其後更發展出更加精微的微積分。
F. 舊時教師的教學方法
貫徹面向全體原則,既不能以全班學力最低的學生為准,人為地降低教學難度、放慢教學進度,也不能以「學科尖子生」為准,更不能用同一標准要求全體學生。貫徹因材施教原則,做到既能關注全體、又能兼顧個體,才是對面向全體原則的最好詮釋。
2、必須擁有一種特殊的能力,那就是在課堂上的「快速指導」能力。這里提供一個高效課堂公式:
高效課堂=精練的講授+恰當的練習+有效的指導
學生在課堂上遇到學習困難得到及時的幫助,這就是最好的「德育」。
3、如果中小學課堂能夠從「目中無人」的地方轉變為「有情有智」的場所,那麼中小學生厭學現象就會發生根本性的好轉。
教師教學
4、貫徹直觀教學原則有以下幾種途徑:
一是實物直觀。
實物直觀是通過實物進行教學,直接將對象呈現在學生面前。在學習日常生活中比較生疏的內容時,實物直觀能真實有效地為學生提供理解、掌握新知所必需的感性經驗。另外,到實地參觀也是實物直觀的最好途徑之一。我們在進行試驗展示的時候,因為班級位置或是學生高矮的原因,導致部分學生不能清晰直觀看到老師的教學步驟,沒關系,用微講師課堂教學系統的高清攝像頭同步錄制演示步驟並同步大屏幕展示,教學無憂就這么任性!
二是影像直觀。
影像直觀是運用各種手段,包括圖片(包括教材插圖與課堂板畫)、圖表、模型、幻燈、錄音、錄像、電影、電視、多媒體技術、網路技術等進行輔助教學。影像直觀相對於實物直觀更具有不受實際條件限制的特點,從而彌補實物直觀的缺陷。講到重點難點易錯點的時候,老師可以藉助信息化工具如微講師微課製作工具一類的免費軟體提前錄制或是製作5-10分鍾的簡單微課,將靜態的內容動態展示更能激發學生學習興趣!
三是語言直觀。
語言直觀是教師運用自己的語言、藉助學生已有的知識經驗進行生動的比喻、形象的描述,強化學生的感性認識,達到直觀的教學效果。語言直觀的運用效果主要取決於教師自身的素養。老師可以在藉助無線麥克在教室任意位置邊走邊講,並且與學生充分的互動,讓課堂變得更加有活力,更加有趣!
四是知識直觀。
新知識如果是建立在學生已有知識與經驗的基礎上,通過已有知識與經驗的延伸、拓展、聯想、遷移得來的,這樣的知識形成過程更容易讓學生接受。
G. 古代人學數學之類的學科嗎
數學作為一門應用性非常強的基礎學科,無論天文、水利、建築,乃至商業、日常生活,都須臾離不開。如果沒有相應的數學教育,中國不可能長時間在世界上保持文明的領先地位。事實上,中國早就存在數學教學,並逐漸形成了比較系統的數學教育制度。
西周時期針對貴族子弟開設的教學科目「六藝」中的「數」,便是一種早期的數學教育,而平民所學習的「小藝」中,也包含了「數」。到南北朝時期,中國數學蓬勃發展,《孫子算經》《夏侯陽算經》《張丘建算經》等算學著作相繼問世。同時,數學教育也有較大發展,北魏在中央官學中專門開設的「算學」,可算是世界上最早開設的數學專科學校。這意味著算學被列為基本的國學之一。
隋唐時期,中國首次建立起正式的數學教育制度。隋文帝時期,中國在國子監設立了算學館,在算學館設算學博士1人,助教2人,學生8人,並制定了專用的數學教材《算經十書》對學生進行講授。唐貞觀年間,算學教育規模進一步擴大,專門設博士2人,助教1人,學生30人,八品以下子弟以及庶人喜歡算學、年齡在14~19歲之間者都可入學,學習期限9年。
從公元11世紀到14世紀的宋元時期,是以籌算為主要工具的中國古代數學的鼎盛時期。在此期間,涌現出一批傑出的數學家和數學著作,中國數學達到最高境界,與當時的阿拉伯數學一道居於世界領先地位。而在數學教育方面,在科舉考試及太學、國子監等學校中都有專門的算學考試。
14世紀中後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度削減數學內容。失去國家的政策鼓勵之後,數學教育也出現衰退,自此,中國古代數學便開始衰退,落後於世界了。
H. 數學授課有哪些教法
有7種常用的數學教學方法:
1.講授法是一種教學方法,教師使用口語來描述情境,敘述事實,解釋概念,論證原則和澄清規則。
2..談話法又稱回答法,是通過教師和學生之間的對話傳播和學習知識的方法。其特點是教師指導學生利用現有的經驗和知識回答教師提出的問題,獲取新知識或鞏固和檢查所獲得的知識。
3.討論方法是一種方法,使整個班級或小組圍繞某個中心問題發表自己的意見和看法,共同探索,互相激勵,進行頭腦風暴和學習。
4.演示方法是一種教學方法,教師通過現代教學方法向學生展示物理或物理圖像進行觀察,或通過示範實驗,使學生獲得知識更新。它是一種輔助教學方法,通常與講座,對話,討論等結合使用。
5.練習法是學生在教師指導下鞏固知識,培養各種學習技能的基本方法。這也是學生學習過程中的一項重要實踐活動。
6.實驗法是一種教學方法,學生在教師的指導下使用某些設備和材料,通過操作引起實驗對象的某些變化,並通過觀察這些變化獲得新知識或驗證知識。一種常用於自然科學學科的方法。
7.實習是一種教學方法,學生可以使用某些實習場所,參加某些實習,掌握一定的技能和相關的直接知識,或者驗證間接知識並全面應用所學知識。
(8)古代數學學科教學方法擴展閱讀:
數學教學方法(methods. of mathematics teach-ing)教學方法的一種.教師指導學生學好數學基礎知識,提高數學基本技能,發展數學才能,進行思品德教育的方式、方法.它既包括了教師教的方法,也包括了學生學的方法.數學教學方法對於激發學生學習數學的興趣,實現數學教學目的,提高數學教學質量,都起著重要的作用.
遠在中國春秋末期和古希臘時期,就有講解、問答、練習、復習等方法的記載.古代主要採用講授法,近代推行了演示、觀察、實驗、參觀等新方法,並改進了解、談話等方法.近些年來隨著現代科學技術的進步,現代化教學手段的使用,教育學與心理學新成就的出現,資訊理論、控制論與系統論新學科的建立與發展,為數學教學方法的改進與發展提供了良好條件。
常用的數學教學方法有:啟發、講解、談話、練習、討論、演示、實習、觀察、復習等,其中,啟發、講解、談話、練習等用的較多.當前國內外正在實驗的數學教學方法有:發現、研究、自學輔導、程序教學、最優化教學、演算法化教學、「讀讀、議議、講講、練練」等。
I. 中國古代數學形成學科出現在哪個朝代他比世界上其他國家早出現多少年
秦漢、魏晉、南北朝,共400年間的數學發展歷史。而西方古希臘時期就形成了以畢達哥拉斯、歐幾里得、阿基米德、阿波羅尼奧斯為主的數學幾何學,所以從形成理論來說,中國要晚500年至1000年。
一、中國數學的起源與早期發展 據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。
用算籌記數,有縱、橫兩種方式:表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間﹝法則是:一縱十橫,百立千僵,千、十相望,萬、百相當﹞,並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。 籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理﹝西方稱勾股定理﹞的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的
186年(應該在此前)。
西漢末年﹝公元前一世紀﹞編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年﹝公元前一世紀﹞。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積
原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。 同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。
三、中國數學教育制度的建立
隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。 隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》(包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》﹞,作為算學館學生用的課本。對保存古代數學經典起了重要的作用。
由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。
四、中國數學發展的高峰
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀﹝宋、元兩代﹞,籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》﹝11世紀中葉﹞,劉益的《議古根源》﹝12世紀中葉﹞,秦九韶的《數書九章》﹝1247﹞,李冶的《測圓海鏡》﹝1248﹞和《益古演段》﹝1259﹞,楊輝的《詳解九章演算法》﹝1261﹞、《日用演算法》﹝1262﹞和《楊輝演算法》﹝1274-1275﹞,朱世傑的《算學啟蒙》﹝1299﹞和《四元玉鑒》﹝1303﹞等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有: 公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。 (《黃帝九章演算法細草》已佚)公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題。
公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。
公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。 公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。 公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。
五、中國數學的衰落與日用數學的發展
這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。
明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》﹝1592﹞問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。 六、西方初等數學的傳入與中西合璧
十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。 十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷﹝1607﹞,其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》﹝2卷,1631﹞、《割圓八線表》﹝6卷﹞和羅雅谷的《測量全義》﹝10卷,1631﹞。在徐光啟主持編譯的《崇禎歷書》﹝137卷,1629-1633﹞中,介紹了有關圓椎曲線的數學知識。入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》﹝53卷,1723﹞,是一部比較全面的初等數學書,對當時的數學研究有一定影響。
七、傳統數學的整理與復興
乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。
在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》﹝約1859﹞中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷﹝1795-1810﹞,開數學史研究之先河。 八、西方數學再次東進
1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。
主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷﹝1857﹞,使數學的還有江澤涵﹝1927﹞、陳省身﹝1934﹞、華羅庚﹝1936﹞、許寶騤﹝1936﹞等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素﹝1920﹞,美國的伯克霍夫﹝1934﹞、奧斯古德﹝1934﹞、維納﹝1935﹞,法國的阿達馬﹝1936﹞等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊﹝1952年改為《數學學報》﹞,1951年10月《中國數學雜志》復刊﹝1953年改為《數學通報》﹞。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》﹝1953﹞、蘇步青的《射影曲線概論》﹝1954﹞、陳建功的《直角函數級數的和》﹝1954﹞和李儼的《中算史論叢》5集﹝1954-1955﹞等專著,到1966年,共發表各種數學論文約2萬余篇。 除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。 1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。 1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。 十、中國數學的特點
(1)以演算法為中心,屬於應用數學。中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的。
(2)具有較強的社會性。中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起。同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質。
(3)寓理於算,理論高度概括。由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹。其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等。 十一、中國數學對世界的影響
數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。
中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展。