1. 什麼是三系法雜交育種,各有什麼特點和作用
三系是指雄性不育系、保持系和恢復系。要想利用水稻的雜種優勢,首先必須解決大量生產第一代雜交種子的難題,解決這個問題的有效途徑首推培育一種特殊的水稻品種,叫做雄性不育系。
1.雄性不育系
雄性不育系是一種雄性退化(主要是花粉退化)但雌蕊正常的母水稻,由於花粉無生活力,不能自花授
粉結實,只有依靠外來的花粉才能受精結實。因此,藉助這種母水稻(雄性不育系),作為遺傳工具,通過人工輔助授粉的辦法,就能大量生產雜交種子。
2.保持系
這是一種正常的水稻品種,它有一種特殊的功能,即用它的花粉授給不育系後,所產生後代,仍然是雄性不育的。因此,藉助保持系,不育系就能一代一代地繁殖下去。如果沒有保持系,不育系就會絕種。
3.恢復系
這也是一種正常的水稻品種,它的特殊功能是,用它的花粉授給不育系後,所產生的雜交種雄性恢復正常,能自交結實,如果該雜交種有優勢的話,就可用於生產。
由此可見,要利用水稻的雜種優勢,必須做到三系配套,不育系為生產大量的雜交種子提供了可能性,藉助保持系來繁殖不育系,用恢復系給不育系授粉來生產雄性恢復且有優勢的雜交稻。三系法雜交稻的生產程序,可圖示如下:
三系法雜交稻的生產程序
我國於1964年開始研究雜交水稻,1973年實現了三系配套,1976年開始在大面積生產上推廣雜交稻,由於增產效果明顯,雜交稻的種植面積迅速擴大,2004年達2.6億多畝,佔全國水稻總面積的59%,占總產量的67%。近幾年全國水稻的平均畝產約420公斤,其中雜交水稻為470公斤,常規稻為380公斤,2004年日本水稻平均畝產為445公斤,世界水稻平均畝產為253公斤
2. 何謂三系配套
指雜交水稻不育系、保持系和恢復系必須配套才能使用的一種雜交方法。
三系含義
1、不育系:雄性不育系(A)--基因型 S(msms)
2、保持系:雄性不育保持系(B)--基因型 F(msms)
3、恢復系:雄性不育恢復系(R)--基因型 F/S(MSMS)
1973年,我國秈型雜交水稻三系:不育系、保持系、恢復系配套成功,首次在世界上實現了水稻雜種優勢利用。此即以細胞質雄性不育系為遺傳工具的「三系法」,也是我國的第一代雜交水稻育種技術。
三系配套水稻優勢
三系雜交稻是三種具有特殊能力的水稻配合所生產出的具有雜種優勢的雜交水稻。水稻是雌雄同花作物,要想讓它雜交,就要找到或培育一個雄蕊沒有生育能力的母水稻,即雄性不育系(不育系)。
第二步,給母水稻找一個特定的「丈夫」,它的核基因型與不育系相同,但細胞質基因正常可育,用它給不育系授粉,生出來也是雄蕊沒有生育能力、仍能保持雄性不育特性的母本,如此使雄性不育性不斷遺傳下去(保持系);
在此基礎上,再給母本找另一個特定的「丈夫」(恢復系),它一般要比母本高大,也有健全的花粉和發達的柱頭,具有能夠恢復細胞質雄性不育性的核基因,它與不育系雜交產生的雜交稻正常可育且長得比父母都要健壯,並且高產優質。
以上內容參考:中共中央紀律檢查委員會-第三代雜交水稻,不僅僅是高產
以上內容參考:網路-三系雜交
3. 三系雜交水稻種法
三系法雜交水稻育種
(1)三系法雜交稻的由來:兩個遺傳組成不同的親本雜交產生的雜種F1代優於雙親的現象稱為雜種優勢。具體地講,雜種F1代在生長勢、生活力、繁殖率、抗逆性、適應性、產量和品質諸方面比雙親優越。雜種優勢可分為超親優勢、平均優勢和競爭優勢。人們常說的雜種優勢利用通常是指利用作物的競爭優勢。
水稻是典型的自花授粉作物,雌雄同花。水稻雜種優勢利用,只有依靠雄性不育的特性,通過異花授粉的方式來生產大量的雜交種子的方法有多種,其中之一便是使用雄性不育系(A)、保持系(B)和雄性不育恢復系(R)來配製雜種一代。由於這種利用水稻雜種優勢的方法需要不育系、保持系和恢復系配套,故稱為三系法雜種優勢利用。用此法培育的雜交水稻簡稱為三系法雜交稻。水稻三系之間關系密切,其中不育系除了雄性器官發育不正常、花粉敗育不能自交結實、抽穗吐頸不完全之外,其餘性狀與保持系基本無異。保持系與不育系雜交,獲得的不育系種子供來年制種和繁殖用;不育系與恢復系雜交,獲得的雜交水稻種子供下季大田生產用;保持系與恢復系的自交種子則可繼續作為保持系和恢復系用。
(2)三系法雜交稻育種的歷史:1958年,日本東北大學勝尾清發現中國的紅芒野生稻能導致藤板5號產生雄性不育。1966年日本琉球大學新城長友以欽蘇拉包羅Ⅱ為母本與台中65雜交,育成BT型不育胞質台中65A,並將該雜交組合後代的部分可育株經自交穩定選出了BT型不育系的同質恢復系,於1968年實現粳型雜交稻三系配套。我國雜交水稻的研究始於1964年,當時在湖南安江農校任教的袁隆平從洞庭早秈、勝利秈和矮腳南特等秈稻品種中找到6株雄性不育株,並根據花粉敗育情況分為無花粉型、敗育型和退化型3種。隨後進行的遺傳和數以千計的測交試驗表明:這些材料屬於單基因控制的隱性核不育,找不到能完全保持其不育特性的品種,利用價值不大。1970年11月,李必湖等在海南省三亞市南紅農場的水溝邊發現了1株花粉敗育的野生稻(簡稱野敗),為雄性不育系的選育打開了突破口。次年春季的試驗就表明廣場矮3784、6044、二九南等品種(系)對野敗不育株具有很好的保持能力。經過隨後2年全國各育種單位的通力合作,到1972年冬在海南冬繁時就獲得了農藝性狀一致、不育株率和不育度均達到100%的不育系群體,如珍汕97A和B、二九南1號A和B等。至此,我國第一批野敗細胞質不育系宣告育成。水稻雄性不育系育成以後,1973年原廣西農學院等單位陸續篩選出IR24、IR26、泰引1號、古154等一批強優恢復系,並選配出汕優2號、南優2號等系列強優勢雜交稻組合。從此,以我國秈型三系雜交水稻實現配套為標志,宣告雜交水稻選育成功。
(3)雄性不育系與保持系的選育:選育水稻雄性不育系首先要獲得能穩定遺傳的雄性不育株,其次是有能把雄性不育株的不育特性傳遞下去的保持材料,然後通過測交和連續成對回交,完成全部核置換之後就可育成三系雄性不育系及其相應的同型保持系。
①雄性不育株的獲得:獲得原始的雄性不育株,可從大田自然群體中尋找或通過遠緣雜交產生。前者如袁隆平早期從勝利秈、洞庭早秈、矮腳南特等秈稻品種中發現的C系統不育材料;後者如李必湖等發現並被試驗證實由野生稻與栽培稻天然雜交產生的野敗雄性不育株;四川農業大學通過地理生態遠緣雜交獲得的用於培育岡46A等不育系的不育株,湖南雜交水稻研究中心用於培育印水型系列不育系的不育株及四川農科院水稻高梁研究所通過秈粳交獲得的用於培育K系列不育系的不育株。這些不育株均為核質互作型不育,比較容易找到保持系,是選育三系雄性不育系不育單株的主要來源。
②保持材料(B)的選育:保持系的選育可採取測交篩選和人工制保法進行。
測交篩選法:獲得雄性不育株後,選用掌握的國內外育成的大量優良品種(系)與之雜交,從中挑選具有良好保持能力的材料用作保持系。雜交稻育種初期就是採用這種方法,從常規品種中獲得了不少對野敗不育株具有很好保持力的品種,如珍汕97、V20、二九南l號等。這些品種對我國快速育成具有實際利用價值的秈型三系雄性不育系發揮了重要的作用,其中部分品種培育的不育系至今仍被廣泛應用於生產。人工制保法:隨著常規育種親本使用范圍的拓寬,育成的常規品種或多或少地都帶有若干個恢復基因或微效恢復基因,直接利用這些品種作保持系的難度越來越大,甚至不可能。另一方面,雜交稻育種水平的提高對不育系也提出了更加嚴格的要求,需要不育系具備的優良性狀也越來越多。在此情況下,僅僅通過對育成的現有常規品種的測交篩選已難以完全達到新不育系選育的預期目標,而必須依靠人工雜交選育的方法對不育系進行改良,把符合育種目標的性狀與不育系必備的性狀聚集在一起,才有可能培育出高質量的不育系。
人工雜交選育可採用一次雜交或復式雜交的方法。
一次雜交主要有如下兩種:
保持系×保持系。選擇2個各具有特點的保持材料雜交,然後從後代中選擇符合育種目標的單株進行測交和回交轉育即可。該種配組方式比較簡單,育種速度也較快,對改良某個不育系的個別或少數幾個性狀較為有效。
保持系×恢復系或恢復系×保持系。少數情況下,具有某種優良性狀的親本或恢復系帶有微效恢復基因,雖不能直接用其作回交轉育親本,但卻可以用它作雜交親本與保持系配組,從中選擇具有該優良性狀的單株進行測交篩選。這種配組方式選育過程比較長,難度也較大,但有可能育成一個綜合性狀較好的新不育系。
一般做法是雜交配組後的F2或F3代就開始擇株進行測交,依據測交後代的育性再從中選擇優良單株進行回交轉育,直至後代入選株系群體隆狀整齊一致和不育特性完全穩定下來為止。需要注意的是用來測交的單株應該盡可能多一些,種植的測交或回交群體也應盡可能大些,測交世代應盡可能早些。式雜交法即把多個品種(系)的有利基因綜合到一個新的保持品種中去。此法對育成優質、高異交率與抗病的不育系非常有利。
③雄性不育系的轉育:雄性不育系轉育的基本原理就是細胞核置換,也就是染色體代換過程,常用做法是測交篩選與連續成對回交,不育系的完全核置換與同型保持系的穩定同步完成。步驟如下:
測交篩選:選用性狀符合育種目標的常規品種(系)或人工制保材料為父本,與胞質互作型雄性不育株或不育系雜交,根據測交F1花粉敗育情況決定回交與否。
成對回交:在測交F1出現的不育株中,選擇不育度高、花粉典敗和圓敗為主的單株作母本,再與父本連續回交數代,即可轉育成新的不育系。輪回親本就是其相應的保持系。回交選育不育系的群體大小依據使用的輪回親本不同而有所區別。大多數情況下回交一代一般要求50~lOO株;回交二代建立5~10個株系,每個株系種植20~30株;在回交三代群體中選擇綜合性狀最好的株系擴大回交四代群體至上1000株左右,並對各性狀的整齊度和育性進行鑒定。如各項指標均符合不育系要求,即可投入生產試驗。
(4)恢復系的選育:
①恢復基因的組成及其來源:雖然不同研究者的試驗結果有差異,但大多數人的研究表明:絕大多數類型的秈型胞質互作型雄性不育系的恢保關系是相同的,也即雄性不育系的不育性和可恢復性由2對育性基因控制,恢復系的基因型為R1RlR2R2,不育系與保持系的基因型為rlrlr2r2,雜種F1基因型為RlrlR2r2。
根據恢復品種的分布和親緣關系得知,對秈型三系雄性不育系具有恢復力的品種大多數是進化程度較低的秈稻或者秈粳交後代,主要來源於低緯度的東南亞國家和我國華南的廣大地區,韓國的部分秈粳交品種具有恢復能力則歸功於使用了低緯度地區的秈稻作雜交親本。長江流域的早秈品種則幾乎沒有強恢復力的品種,我國的常規粳稻及日本、朝鮮的粳稻品種均無育性恢復能力。
②恢復系的選育方法:恢復系選育分為測交篩選和雜交選育法。測交篩選法曾為配製強優勢組合,發展我國的雜交水稻事業作出了巨大的貢獻。但隨著生產的發展,僅靠對現有的品種進行簡單的測交篩選已難以滿足雜交稻育種新的要求,還必須依靠雜交配組,通過基因重組把多個優良性狀聚合在一起,以篩選出新的恢復系。雜交選育法也就是育種者通常所說的人工制恢。
第一,測交篩選法:如果說恢復系的選育是與不育系的選育同時進行的,則應歸功於當初使用了大量國內外品種資源對野敗不育株進行的廣泛測交。通過測交除了獲得了對野敗不育株具有保持能力的品種外,還發現了不少能夠使野敗不育株的育性得以恢復的品種,為三系迅速配套提供了又一物質基礎。這種用現有種質對不育系進行測交,從中篩選具有恢復能力的品種(系)的方法就叫做測交篩選法。測交篩選法簡單快速,用測交篩選法陸續育成的古154、IR24、IR26、泰引1號、密陽46等強優恢復系,對我國不同時期雜交水稻的發展產生了重要的作用。其步驟如下:①初測。用獲得的優良品種(系)對不育系授粉,依雜種F1的結實率、經濟性狀、抗性等進行初評,每組合種20株左右。②復測。經初測鑒定有恢復力且其他性狀無明顯分離的品種再做一次雜交,驗證初測的結果。種植群體一般為50~100株。③鑒定。根據復測的結果進行嚴格的淘汰,入選少量株系重新配製一定數量的雜交種,供大田生產鑒定或新品種聯合比較試驗。
第二,雜交選育法:雜交選育可採用一次雜交或多次雜交的方式,因育種目標不同可選用不同的組配方式。
一次雜交法:通過一次雜交把恢復因子導入新的品種(系),再在後代的分離群體中採用系譜法進行選育。常用的雜交方式是恢復系×恢復系,但也有的使用保持系×恢復系和不育系×恢復系。
恢復系×恢復系。選用2個均具有恢復因子且性狀間能互補的品種雜交,在雜種後代中選育符合育種目標的新恢復系,由於2個親本均具有恢復基因,雜種各世代出現恢復株的幾率很高,低世代一般可不進行測恢,而等入選單株性狀較為穩定時才開始測恢。此種配組方式比較簡單快速,但應注意擴大雜交親本的遺傳差距。如福建省三明市農科所選育的明恢63(1R30/圭630)、中國水稻研究所育成的中恢465(選10—9/輪回422)就是採用此法育成的。
保持系×恢復系或恢復系×保持系。當某個品種具有諸如抗逆、廣親和等優良性狀但不帶恢復基因而不能直接利用時,就可選用1個恢復系與其雜交。由於雜種各世代單株的基因型有可恢與不可恢之分,但又難以用肉眼從表型來判斷,只能通過選株大量測交的方式從中篩選出基因型可恢的單株。採用這種配組方式測交的世代宜早不宜遲,單株也應盡可能多一些。如中國水稻研究所從台雄2號/IR28後代中選出的台8—5恢復系,與珍汕97A配組而成的汕優85一度成為浙江省的主栽組合。
不育系×恢復系。雄性不育系與恢復系雜交後,從雜種F2代開始選擇結實率較高的單株進行連續加代,就能選出性狀穩定一致的新恢復系。由於是同質恢復系,方法雖簡單,但如選擇不當,所配組合的雜種優勢往往難如人意。
多次雜交法:採用這種配組方法可把多個品種的有利基因綜合到1個新品系中去,從而達到選育新恢復系的目的。如湖南省農科院選育的早熟恢復系二六窄早(IR26/窄葉青8號//早恢l號)、遼寧省農科院水稻所選育的粳型恢復系C57(IR8/科情3號//京引35)等即是用此法育成的。
(5)強優組合選配的原則:選育優良雜交組合的關鍵是選配親本,親本的好壞是能否育成強優勢雜交稻的基礎。實踐證明,選配強優勢組合應充分考慮如下幾個方面:
①選擇雙親遺傳基礎差異大的親本配組:遺傳差異是產生雜種優勢的基礎。在一定的范圍內,雙親的遺傳差異越大,優勢也越強。這種差異可以是血緣上的差異,也可以是地理或生態類型上的差異。如汕優63、威優64等就是利用了生態類型和地理來源不同的雙親配組,而汕優10號、協優46則除了雙親的生態類型和地理來源不同的差異外,還存在著秈粳稻血緣上的差異。
②選擇性狀能明顯互補的雙親配組:用優良性狀能互補的雙親配組,較容易選配出綜合性狀優於雙親的雜交稻新組合。如著名的雜交中稻汕優63,雖然父母本(珍汕97A、明恢63)在生育期、株型、抗性和穗粒結構等方面有較大差異,但因能互補,故表現出很強的雜種優勢。
③選擇農藝眭狀優良的親本配組:雜交稻的產量由雙親的平均值加上互作產生的雜種優勢構成。只有兩個親本都具備了較為優良的農藝性狀,才有可能選配出農藝性狀較好的優勢組合,從而達到提高產量的目的。
④選擇配合力好的親本配組:配合力是指1個親本與其他若干品種(系)雜交,遺傳給子一代的性狀的平均表現。它由親本基因型所決定,與雜種優勢的強弱有直接關系。只有配合力好的親本才有可能選配出強優勢雜交稻新組合,這也是為什麼珍汕97A、V20A能夠長期為育種者樂意使用的主要原因。
4. 各育種方式優缺點對比
各育種方式優缺點如下
一、誘變育種
誘變育種是指利用人工誘變的方法獲得生物新品種的育種方法
原理:基因突變
方法:輻射誘變,激光、化學物質誘變,太空(輻射、失重)誘發變異→選擇育成新品種
優點:能提高變異頻率,加速育種過程,可大幅度改良某些性狀;變異范圍廣。
缺點:有利變異少,須大量處理材料;誘變的方向和性質不能控制。改良數量性狀效果較差
二、雜交育種:
雜交育種是指利用具有不同基因組成的同種(或不同種)生物個體進行雜交,獲得所需要的表現型類型的育種方法。其原理是基因重組。
方法:雜交→自交→選優
優點:能根據人的預見把位於兩個生物體上的優良性狀集於一身。
缺點:時間長,需及時發現優良性狀。
三、單倍體育種:
單倍體育種是利用花葯離體培養技術獲得單倍體植株,再誘導其染色體加倍,從而獲得所需要的純系植株的育種方法。(主要是考慮到結合中學課本,經查閱相關資料無誤。)其原理是染色體變異。優點是可大大縮短育種時間。
原理:染色體變異,組織培養
方法:選擇親本→有性雜交→F1產生的花粉離體培養獲得單倍體植株→誘導染色體加倍獲得可育純合子→選擇所需要的類型。
優點:明顯縮短育種年限,加速育種進程。
缺點:技術較復雜,需與雜交育種結合,多限於植物。
四、多倍體育種:
原理:染色體變異(染色體加倍)。
方法:秋水仙素處理萌發的種子或幼苗。
優點:可培育出自然界中沒有的新品種,且培育出的植物器官大,產量高,營養豐富。
缺點:只適於植物,結實率低。
(4)分析三系配套育種方法的優缺點擴展閱讀:
多倍體育種特點
1、巨大性:莖稈粗壯,葉片果實種比較大;
2、不育性:奇數倍的多倍體在減數分裂時,同源染色體間配對不正常,因而表現出不育性;
3、抗逆性:多倍體新陳代謝旺盛,適應環境能力強;
4、高營養:碳水化合物、維生素、蛋白質、植物鹼等含量偏高;
5、生理特性改變:生長緩慢、發育延遲、呼吸和蒸騰作用減弱、抗性增強等;
6、遺傳變異性:遺傳性比較豐富、遺傳變異的范圍比較廣泛;
7、可孕性:異源多倍體是高度可育的,因其在減數分裂時通常染色體正常配對,不出現多倍體,表現出自交親和、結實率高。
5. 六種育種方法,名稱,原理,過程,優缺點分別是什麼
一、誘變育種:
誘變育種是指利用人工誘變的方法獲得生物新品種的育種方法
原理:基因突變
方法:輻射誘變,激光、化學物質誘變,太空(輻射、失重)誘發變異→選擇育成新品種
優點:能提高變異頻率,加速育種過程,可大幅度改良某些性狀;變異范圍廣。
缺點:有利變異少,須大量處理材料;誘變的方向和性質不能控制。改良數量性狀效果較差。
二、雜交育種:
雜交育種是指利用具有不同基因組成的同種(或不同種)生物個體進行雜交,獲得所需要的表現型類型的育種方法。其原理是基因重組。
方法:雜交→自交→選優
優點:能根據人的預見把位於兩個生物體上的優良性狀集於一身。
缺點:時間長,需及時發現優良性狀。
三、單倍體育種:
單倍體育種是利用花葯離體培養技術獲得單倍體植株,再誘導其染色體加倍,從而獲得所需要的純系植株的育種方法。(主要是考慮到結合中學課本,經查閱相關資料無誤。)其原理是染色體變異。優點是可大大縮短育種時間。
原理:染色體變異,組織培養
方法:選擇親本→有性雜交→f1產生的花粉離體培養獲得單倍體植株→誘導染色體加倍獲得可育純合子→選擇所需要的類型。
優點:明顯縮短育種年限,加速育種進程。
缺點:技術較復雜,需與雜交育種結合,多限於植物。
四、多倍體育種:
原理:染色體變異(染色體加倍)
方法:秋水仙素處理萌發的種子或幼苗。
優點:可培育出自然界中沒有的新品種,且培育出的植物器官大,產量高,營養豐富。
缺點:只適於植物,結實率低。
五、細胞工程育種:
細胞工程育種是指用細胞融合的方法獲得雜種細胞,利用細胞的全能性,用組織培養的方法培育雜種植株的方法。
原理:細胞的全能性
方法:(1)植物:去細胞壁→細胞融合→組織培養
(2)動物克隆:核移植→胚胎移植
優點:能克服遠緣雜交的不親和性,有目的地培育優良品種。動物體細胞克隆,可用於保存瀕危物種、保持優良品種、挽救瀕危動物、利用克隆動物相同的基因背景進行生物醫學研究等。
缺點:技術復雜,難度大;它將對生物多樣性提出挑戰,有性繁殖是形成生物多樣性的重要基礎,而「克隆動物」則會導致生物品系減少,個體生存能力下降。
六、基因工程育種:
物質基礎是:所有生物的dna均由四種脫氧核苷酸組成。其結構基礎是:所有生物的dna均為雙螺旋結構。一種生物的dna上的基因之所以能在其他生物體內得以進行相同的表達,是因為它們共用一套遺傳密碼。在該育種方法中需兩種工具酶(限制性內切酶、dna連接酶)和運載體(質粒),質粒上必須有相應的識別基因,便於基因檢測。如人的胰島素基因移接到大腸桿菌的dna上後,可在大腸桿菌的細胞內指導合成人的胰島素;抗蟲棉植株的培育;將固氮菌的固氮酶基因移接到植物dna分子上去,培育出固氮植物。固氮基因的表達方式為:
原理:基因重組(或異源dna重組)。
方法:提取目的基因→裝入載體→導入受體細胞→基因表達→篩選出符合要求的新品種。
優點:不受種屬限制,可根據人類的需要,有目的地進行。
缺點:可能會引起生態危機,技術難度大。
6. 什麼是三系配套
三系是雄性不育系、雄性不育保持系、雄性不育恢復系的總稱。
7. 六種育種方法.名稱.原理.過程.優缺點
六種育種方法包括植物的四種(雜交育種、遠緣雜交、誘變育種、分子育種)和動物的兩種(雜交育種、基因工程育種)。
一、雜交育種:
1、原理:基因重組,通過基因重組產生新的基因型,從而產生新的優良性狀。
2、過程:
2.1雜交前的准備工作首先要熟悉各種魚類的生殖習性;
2.2選擇適當的受精方法進行雜交雜交前期在臨近性成熟和生殖季節到來之時,一定要將雌雄兩種魚分池飼養,避免自群交配;
2.3記載、掛牌和管理用不同品種(或種)的魚類進行雜交;
2.4加速育種進程從雜交到新品種育成推廣;
2.5雜交後代的選擇採用個體選擇法時,選擇一般從子二代開始,因子二代變異范圍最大,可望從中選出合意的變異體。
3、優點:可以將兩個或多個優良性狀集中在一起。
4、缺點:不會產生新基因,且雜交後代會出現性狀分離,育種過程緩慢,過程復雜。
二:遠緣雜交
1、原理:基因重組,通過基因重組產生新的基因型,從而產生新的優良性狀。
2、優缺點:可以把不同種、屬的特徵、特性結合起來,突破種屬界限,擴大遺傳變異,從而創造新的變異類型或新物種。產生的後代為遠緣雜種。由於遠緣雜交往往重演物種的進化的歷程,故也是研究生物進化的重要實驗手段。遠緣雜交一般不易結實,即使結實,雜種也通常不育或夭亡,雜種後代分離幅度大,分離世代長且不易穩定。
三:誘變育種
1、原理:在人為的條件下,利用物理、化學等因素,誘發生物體產生突變,從中選擇,培育成動植物和微生物的新品種。
2、優缺點:誘變育種存在的主要問題是有益突變頻率仍然較低,變異的方向和性質尚難控制。因此提高誘變效率,迅速鑒定和篩選突變體以及探索定向誘變的途徑,是當前研究的重要課題。
四:分子育種
1、原理:將基因工程應用於育種工作中,通過基因導入,從而培育出一定要求的新品種的育種方法。
2、優缺點:傳統育種方法屬於雜交育種,品種改良主要受種原變異之限制,而不同物種(species) 間之雜交頗為困難,育種成果難有大突破,「綠色革命」(green revolution) 很難再發生。利用基因工程技術進行作物品種改良,系指以遺傳工程(genetic engineering) 技術,將特定基因或性狀導入缺乏此基因或特性之目標作物(target crop) 的育種方法;因此利用基因工程技術進行作物品種改良,可以突破種原之限制及種間雜交之瓶頸,創造新性狀或新品種,亦即未來「基因革命」(gene revolution) 很可能迅速取代「綠色革命」。
五、基因工程育種
1、原理:基因重組(或異源DNA重組)。
2、優缺點:不受種屬限制,可根據人類的需要,有目的地進行。可能會引起生態危機,技術難度大。
8. 作物育種中二系法與三系法的區別
二系法與三系法兩者之間有3點不同,具體介紹如下:
一、兩者的原理不同:
1、二系法的原理:除了具有雄性可育的性狀以外,其它性狀均與甲不育系相同,故又稱同型系,它能為不育系提供花粉,保證不育系的繁殖留種。父本乙必須是恢復系。如果乙原來就帶有恢復基因,經過測定,就可以直接利用配置雜交種,共大田生產用。
2、三系法的原理:把雜交母本轉育成不育系,例如,希望雜交組合(甲×乙)利用已有的雄性不育性進行制種,則必須先把母本轉育成甲不育系,常用的做法是利用已有的雄性不育材料與甲雜交,然後連續回交若干次,就得到甲不育系。
二、兩者的作用不同:
1、二系法的作用:建立了光溫敏不育系的兩系法雜種優勢有效利用的新途徑,解決了三系法雜交稻的土要限制因素,使水稻雜種優勢利用進入一個新階段,在7個方面取得了創新與突破。
2、三系法的作用:用於配套不育系育種。
(8)分析三系配套育種方法的優缺點擴展閱讀
遠緣雜交和多倍體育種與常規育種在性質上有所不同。常規育種是在親緣關系比較密切、細胞遺傳學上屬於二倍體水平或具二倍體行為的同一物種內不同品種間的遺傳改良。遠緣雜交則一般指不同種、屬間的雜交。
為了克服遠緣雜種的不育性,經常採用染色體加倍技術,與多倍體育種無區別。但遠緣雜交不一定都是多倍體水平的,而多倍體育種除同源多倍體外,則都是遠緣雜交。
採取遠緣雜交和多倍體育種兩種方法大多是為解決常規育種難以解決的問題,或為實現某種特殊目標以及旨在人工創造新作物、新類型的育種計劃。兩者可造成的遺傳變異較大,而技術難度較高,育種時間也較長,有些原理和方法尚在探索中。
9. 簡述三系法制種的特點及相互關系
三系是指雄性不育系、保持系和恢復系。要想利用水稻的雜種優勢,首先必須解決大量生產第一代雜交種子的難題,解決這個問題的有效途徑首推培育一種特殊的水稻品種,叫做雄性不育系。
1.雄性不育系
雄性不育系是一種雄性退化(主要是花粉退化)但雌蕊正常的母水稻,由於花粉無生活力,不能自花授粉結實,只有依靠外來的花粉才能受精結實。因此,藉助這種母水稻(雄性不育系),作為遺傳工具,通過人工輔助授粉的辦法,就能大量生產雜交種子。
2.保持系
這是一種正常的水稻品種,它有一種特殊的功能,即用它的花粉授給不育系後,所產生後代,仍然是雄性不育的。因此,藉助保持系,不育系就能一代一代地繁殖下去。如果沒有保持系,不育系就會絕種。
3.恢復系
這也是一種正常的水稻品種,它的特殊功能是,用它的花粉授給不育系後,所產生的雜交種雄性恢復正常,能自交結實,如果該雜交種有優勢的話,就可用於生產。
由此可見,要利用水稻的雜種優勢,必須做到三系配套,不育系為生產大量的雜交種子提供了可能性,藉助保持系來繁殖不育系,用恢復系給不育系授粉來生產雄性恢復且有優勢的雜交稻。三系法雜交稻的生產程序,可圖示如下:
三系法雜交稻的生產程序
我國於1964年開始研究雜交水稻,1973年實現了三系配套,1976年開始在大面積生產上推廣雜交稻,由於增產效果明顯,雜交稻的種植面積迅速擴大,2004年達2.6億多畝,佔全國水稻總面積的59%,占總產量的67%。近幾年全國水稻的平均畝產約420公斤,其中雜交水稻為470公斤,常規稻為380公斤,2004年日本水稻平均畝產為445公斤,世界水稻平均畝產為253公斤。
上世紀八十年代,湖北一位農業技術員石明松在水稻品種農墾58中發現一株特別的水稻,它在夏季抽穗時表現為雄性不育,在秋季抽穗則表現雄性正常,經過進一步的研究,終於弄明了其育性轉換與日照長短和溫度高低有密切關系,即在長日高溫條件下,它表現雄性不育;在短日平溫條件下,恢復雄性可育,並將這種水稻命名為光溫敏不育系。
利用光溫敏不育系發展雜交水稻有兩大優越性。第一是免除了保持系,在夏季長日照下可用來與恢復系制種,在秋季或在海南春季可以繁殖自身,不再需要藉助保持系來繁殖不育系,因此用光溫敏不育系配製的雜交稻叫做兩系雜交稻。兩系法在種子生產程序上減少了一個環節,從而降低了種子生產成本。第二是配組自由,選配到優良組合的機率大大高於三系法,大量的試驗表明,95%以上的現有水稻品種,都能使兩系不育系的育性恢復,而只有不到5%的品種能恢復三系不育系的育性。由此可知,在選擇優良組合方面,兩系法要比三系法優越得多。
兩系法雜交稻為我國獨創,於1995年研究成功,是作物育種上的重大突破,近年的種植面積在4000萬畝左右,一般比三系雜交稻增產5-10%。
10. 二系雜交水稻和三系雜交水稻的品質對比
兩系法水稻制種平均畝產可達210.6kg,比三系法增產16.5%。
研創了低緯度海南冬繁、常溫加冷水灌溉夏秋兩季繁殖、高海拔自然低溫夏繁等3套兩系不育系高產穩產繁殖技術體系,繁殖平均畝產可達386.5kg,比三系法增產153.4%,成本減少了50%。
兩系法雜交水稻技術將水稻畝產量由700公斤提高到988公斤,為保障我國的糧食安全做出了巨大貢獻。
兩系法雜交稻具有育性受核基因控制,沒有恢保關系,配組自由;種子繁育程序簡單,成本低;稻種資源利用率高,選育出優良組合機率高等優點。該項目經過20多年的攻關,建立了光溫敏不育系的兩系法雜種優勢有效利用的新途徑,解決了三系法雜交稻的主要限制因素,使水稻雜種優勢利用進入一個新階段。
技術體系
1、建立了完善的雜交水稻育種體系,提出了育種方法從三系法→兩系法→一系法,優勢水平從品種間→亞種間→遠緣雜種優勢利用的雜交水稻育種戰略;闡明了育性轉換與光溫變化的關系;探明了不育系溫敏感時期和敏感部位的不育系光溫作用機制。
2、提出了不育起點溫度低於23.5℃的實用光溫敏不育系關鍵技術指標選育理論,研創了不育起點溫度低於23.5℃的實用光溫敏不育系選育與鑒定技術。
3、建立了形態改良、亞種間雜種優勢及遠緣有利基因利用相結合的兩系法超級雜交稻育種技術路線。