『壹』 時間序列分析法是什麼
時間序列分析法是一種歷史資料延伸預測,也稱歷史引申預測法。它是對以時間數列所能反映的社會經濟現象的發展過程和規律性進行引申外推、預測其發展趨勢的方法。
時間序列,也叫時間數列、歷史復數或動態數列。它是將某種統計指標的數值,按時間先後順序排列所形成的數列。時間序列預測法就是通過編制和分析時間序列,根據時間序列所反映出來的發展過程、方向和趨勢進行類推或延伸,藉以預測下一段時間或以後若干年內可能達到的水平。其內容包括:收集與整理某種社會現象的歷史資料;對這些資料進行檢查鑒別,排成數列;分析時間數列,從中尋找該社會現象隨時間變化而變化的規律,得出一定的模式;以此模式去預測該社會現象將來的情況。
『貳』 時間序列預測方法有哪些分類,分別適合使用的情況是
時間序列預測方法根據對資料分析方法的不同,可分為:簡單序時平均數法、加權序時平均數法、移動平均法、加權移動平均法、趨勢預測法、指數平滑法、季節性趨勢預測法、市場壽命周期預測法等。
1、簡單序時平均數法只能適用於事物變化不大的趨勢預測。如果事物呈現某種上升或下降的趨勢,就不宜採用此法。
2、加權序時平均數法就是把各個時期的歷史數據按近期和遠期影響程度進行加權,求出平均值,作為下期預測值。
3、簡單移動平均法適用於近期期預測。當產品需求既不快速增長也不快速下降,且不存在季節性因素時,移動平均法能有效地消除預測中的隨機波動。
4、加權移動平均法即將簡單移動平均數進行加權計算。在確定權數時,近期觀察值的權數應該大些,遠期觀察值的權數應該小些。
5、指數平滑法即根用於中短期經濟發展趨勢預測,所有預測方法中,指數平滑是用得最多的一種。
6、季節趨勢預測法根據經濟事物每年重復出現的周期性季節變動指數,預測其季節性變動趨勢。
7、市場壽命周期預測法,適用於對耐用消費品的預測。這種方法簡單、直觀、易於掌握。
(2)時間序列的分析方法擴展閱讀:
時間序列預測法的特徵
1、時間序列分析法是根據過去的變化趨勢預測未來的發展,前提是假定事物的過去延續到未來。運用過去的歷史數據,通過統計分析,進一步推測未來的發展趨勢。不會發生突然的跳躍變化,是以相對小的步伐前進;過去和當前的現象,可能表明現在和將來活動的發展變化趨向。
2.時間序列數據變動存在著規律性與不規律性
時間序列中的每個觀察值大小,是影響變化的各種不同因素在同一時刻發生作用的綜合結果。從這些影響因素發生作用的大小和方向變化的時間特性來看,這些因素造成的時間序列數據的變動分為四種類型:趨勢性、周期性、隨機性、綜合性。
『叄』 應用時間序列分析有哪幾種方法
時間序列分析常用的方法:趨勢擬合法和平滑法。
1、趨勢擬合法就是把時間作為自變數,相應的序列觀察值作為因變數,建立序列值隨時間變化的回歸模型的方法。包括線性擬合和非線性擬合。
線性擬合的使用場合為長期趨勢呈現出線形特徵的場合。參數估計方法為最小二乘估計。
非線性擬合的使用場合為長期趨勢呈現出非線形特徵的場合。其參數估計的思想是把能轉換成線性模型的都轉換成線性模型,用線性最小二乘法進行參數估計。實在不能轉換成線性的,就用迭代法進行參數估計。
2、平滑法是進行趨勢分析和預測時常用的一種方法。它是利用修勻技術,削弱短期隨機波動對序列的影響,使序列平滑化,從而顯示出長期趨勢變化的規律 。
(3)時間序列的分析方法擴展閱讀
時間序列分析的主要用途:
1、系統描述
根據對系統進行觀測得到的時間序列數據,用曲線擬合方法對系統進行客觀的描述。
2、系統分析
當觀測值取自兩個以上變數時,可用一個時間序列中的變化去說明另一個時間序列中的變化,從而深入了解給定時間序列產生的機理。
3、預測未來
一般用ARMA模型擬合時間序列,預測該時間序列未來值。
4、決策和控制
根據時間序列模型可調整輸入變數使系統發展過程保持在目標值上,即預測到過程要偏離目標時便可進行必要的控制。
『肆』 時間序列分析的基本步驟
時間序列建模基本步驟是:
①用觀測、調查、統計、抽樣等方法取得被觀測系統時間序列動態數據。
②根據動態數據作相關圖,進行相關分析,求自相關函數。相關圖能顯示出變化的趨勢和周期,並能發現跳點和拐點。跳點是指與其他數據不一致的觀測值。如果跳點是正確的觀測值,在建模時應考慮進去,如果是反常現象,則應把跳點調整到期望值。拐點則是指時間序列從上升趨勢突然變為下降趨勢的點。如果存在拐點,則在建模時必須用不同的模型去分段擬合該時間序列,例如採用門限回歸模型。
③辨識合適的隨機模型,進行曲線擬合,即用通用隨機模型去擬合時間序列的觀測數據。對於短的或簡單的時間序列,可用趨勢模型和季節模型加上誤差來進行擬合。對於平穩時間序列,可用通用ARMA模型(自回歸滑動平均模型)及其特殊情況的自回歸模型、滑動平均模型或組合-ARMA模型等來進行擬合。當觀測值多於50個時一般都採用ARMA模型。對於非平穩時間序列則要先將觀測到的時間序列進行差分運算,化為平穩時間序列,再用適當模型去擬合這個差分序列。
『伍』 對時間序列的分析方法有哪幾種
1、 時間序列 取自某一個隨機過程,如果此隨機過程的隨機特徵不隨時間變化,則我們稱過程是平穩的;假如該隨機過程的隨機特徵隨時間變化,則稱過程是非平穩的。 2、 寬平穩時間序列的定義:設時間序列 ,對於任意的 , 和 ,滿足: 則稱 寬平穩。 3、Box-Jenkins方法是一種理論較為完善的統計預測方法。他們的工作為實際工作者提供了對時間序列進行分析、預測,以及對ARMA模型識別、估計和診斷的系統方法。使ARMA模型的建立有了一套完整、正規、結構化的建模方法,並且具有統計上的完善性和牢固的理論基礎。 4、ARMA模型三種基本形式:自回歸模型(AR:Auto-regressive),移動平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回歸模型AR(p):如果時間序列 滿足 其中 是獨立同分布的隨機變數序列,且滿足: , 則稱時間序列 服從p階自回歸模型。或者記為 。 平穩條件:滯後運算元多項式 的根均在單位圓外,即 的根大於1。 (2) 移動平均模型MA(q):如果時間序列 滿足 則稱時間序列 服從q階移動平均模型。或者記為 。 平穩條件:任何條件下都平穩。 (3) ARMA(p,q)模型:如果時間序列 滿足 則稱時間序列 服從(p,q)階自回歸移動平均模型。或者記為 。 特殊情況:q=0,模型即為AR(p),p=0, 模型即為MA(q)。 二、時間序列的自相關分析 1、自相關分析法是進行時間序列分析的有效方法,它簡單易行、較為直觀,根據繪制的自相關分析圖和偏自相關分析圖,我們可以初步地識別平穩序列的模型類型和模型階數。利用自相關分析法可以測定時間序列的隨機性和平穩性,以及時間序列的季節性。 2、自相關函數的定義:滯後期為k的自協方差函數為: ,則 的自相關函數為: ,其中 。當序列平穩時,自相關函數可寫為: 。 3、 樣本自相關函數為: ,其中 ,它可以說明不同時期的數據之間的相關程度,其取值范圍在-1到1之間,值越接近於1,說明時間序列的自相關程度越高。 4、 樣本的偏自相關函數: 其中, 。 5、 時間序列的隨機性,是指時間序列各項之間沒有相關關系的特徵。使用自相關分析圖判斷時間序列的隨機性,一般給出如下准則: ①若時間序列的自相關函數基本上都落入置信區間,則該時間序列具有隨機性; ②若較多自相關函數落在置信區間之外,則認為該時間序列不具有隨機性。 6、 判斷時間序列是否平穩,是一項很重要的工作。運用自相關分析圖判定時間序列平穩性的准則是:①若時間序列的自相關函數 在k>3時都落入置信區間,且逐漸趨於零,則該時間序列具有平穩性;②若時間序列的自相關函數更多地落在置信區間外面,則該時間序列就不具有平穩性。 7、 ARMA模型的自相關分析 AR(p)模型的偏自相關函數 是以p步截尾的,自相關函數拖尾。MA(q)模型的自相關函數具有q步截尾性,偏自相關函數拖尾。這兩個性質可以分別用來識別自回歸模型和移動平均模型的階數。ARMA(p,q)模型的自相關函數和偏相關函數都是拖尾的。 三、單位根檢驗和協整檢驗 1、單位根檢驗 ①利用迪基—福勒檢驗( Dickey-Fuller Test)和菲利普斯—佩榮檢驗(Philips-Perron Test),我們也可以測定時間序列的隨機性,這是在計量經濟學中非常重要的兩種單位根檢驗方法,與前者不同的事,後一個檢驗方法主要應用於一階自回歸模型的殘差不是白雜訊,而且存在自相關的情況。 ②隨機游動 如果在一個隨機過程中, 的每一次變化均來自於一個均值為零的獨立同分布,即隨機過程 滿足: , ,其中 獨立同分布,並且: , 稱這個隨機過程是隨機游動。它是一個非平穩過程。 ③單位根過程 設隨機過程 滿足: , ,其中 , 為一個平穩過程並且 ,,。 2、協整關系 如果兩個或多個非平穩的時間序列,其某個現性組合後的序列呈平穩性,這樣的時間序列間就被稱為有協整關系存在。這是一個很重要的概念,我們利用Engle-Granger兩步協整檢驗法和J 很高興回答樓主的問題 如有錯誤請見諒
『陸』 時間序列分析法的基本步驟
時間序列建模基本步驟是:①用觀測、調查、統計、抽樣等方法取得被觀測系統時間序列動態數據。②根據動態數據作相關圖,進行相關分析,求自相關函數。相關圖能顯示出變化的趨勢和周期,並能發現跳點和拐點。跳點是指與其他數據不一致的觀測值。如果跳點是正確的觀測值,在建模時應考慮進去,如果是反常現象,則應把跳點調整到期望值。拐點則是指時間序列從上升趨勢突然變為下降趨勢的點。如果存在拐點,則在建模時必須用不同的模型去分段擬合該時間序列,例如採用門限回歸模型。③辨識合適的隨機模型,進行曲線擬合,即用通用隨機模型去擬合時間序列的觀測數據。對於短的或簡單的時間序列,可用趨勢模型和季節模型加上誤差來進行擬合。對於平穩時間序列,可用通用ARMA模型(自回歸滑動平均模型)及其特殊情況的自回歸模型、滑動平均模型或組合-ARMA模型等來進行擬合。當觀測值多於50個時一般都採用ARMA模型。對於非平穩時間序列則要先將觀測到的時間序列進行差分運算,化為平穩時間序列,再用適當模型去擬合這個差分序列。
『柒』 時間序列分析方法一般屬於
時間序列分析方法一般屬於定量預測方法。
時間序列分析是定量預測方法之一。它包括一般統計分析,統計模型的建立與推斷,以及關於時間序列的最優預測、控制與濾波等內容。時間序列分析側重研究數據序列的互相依賴關系。是對離散指標的隨機過程的統計分析,所以又可看作是隨機過程統計的一個組成部分。
(7)時間序列的分析方法擴展閱讀:
時間序列分析方法的基本思想是根據系統的有限長度的運行記錄(觀察數據),建立能夠比較精確地反映序列中所包含的動態依存關系的數學模型,並藉以對系統的未來進行預報。
時間序列分析方法的基本原理是承認事物發展的延續性。應用過去數據,就能推測事物的發展趨勢;考慮到事物發展的隨機性。任何事物發展都可能受偶然因素影響,為此要利用統計分析中加權平均法對歷史數據進行處理。
『捌』 時間序列的分析方法
以時間序列號為自變數,事件為因變數(非數量化的因子要數量化) ,建立合適的數學模型!分析推導(或看趨勢,或預測未來數量等) !aqui te amo。
『玖』 什麼是時間序列分析法
時間序列是按時間順序的一組數字序列。時間序列分析就是利用這組數列,應用數理統計方法加以處理,以預測未來事物的發展。時間序列分析是定量預測方法之一,它的基本原理:一是承認事物發展的延續性。應用過去數據,就能推測事物的發展趨勢。二是考慮到事物發展的隨機性。任何事物發展都可能受偶然因素影響,為此要利用統計分析中加權平均法對歷史數據進行處理。該方法方法簡單易行,便於掌握,但准確性差,一般只適用於短期預測。