導航:首頁 > 研究方法 > 紫外煙氣分析監測方法

紫外煙氣分析監測方法

發布時間:2022-04-03 05:52:07

A. 煙氣含氧量檢測方法主要有哪些

煙氣含氧量檢測方法主要有氧化鋯分析儀、順磁氧分析儀、化學原電池感測器。

B. 煙氣中什麼物質對紫外差分吸收光譜(DOAS)法測量SO2有影響

二氧化硫易溶於水,在高濕低硫情況下,二氧化硫大都溶解到了煙氣所含的水中,溶解狀態的二氧化硫用紫外差分是檢測不到的,所以響應值很小。因此,最大的干擾就是水汽。因此許多在線儀器或者採用加熱快速冷凝法將水除去,由於冷凝速度快,二氧化硫來不及溶解,從而可以檢測。但是這種方法受冷凝速度影響,往往還有部分二氧化硫溶解排出,所以低硫情況下誤差較大。還有一種熱濕法。將煙氣加熱到100度以上,水變成了氣態,氣態水對二氧化硫沒有干擾,從而進行檢測。希望採納。

C. 紫外吸收光譜分析法的定性和定量分析的依據是什麼

物質吸收波長范圍在200~760nm區間的電磁輻射能而產生的分子吸收光譜稱為該物質的紫外可見吸收光譜,利用紫外可見吸收光譜進行物質的定性、定量分析的方法稱為紫外可見分光光度法。其光譜是由於分子之中價電子的躍進而產生的,因此這種吸收光譜決定於分子中價電子的分布和結合情況。

其在飼料加工分析領域應用相當廣泛,特別是在測定飼料中的鉛、鐵、鉛、銅、鋅等離子的含量中的應用。熒光分析也是近年來發展迅速的痕量分析方法,該方法操作簡單、快速、靈敏度高、精密度和准確度好,並且線形范圍寬,檢出限低。

(3)紫外煙氣分析監測方法擴展閱讀

紫外光譜

准確測定有機化合物的分子結構,對從分子水平去認識物質世界,推動近代有機化學的發展是十分重要的。採用現代儀器分析方法,可以快速、准確地測定有機化合物的分子結構。在有機化學中應用最廣泛的測定分子結構的方法是四大光譜法:紫外光譜、紅外光譜、核磁共振和質譜。紫外和可見光譜,簡寫為UV。

D. 紫外吸收光譜定量分析的依據是

分析的依據是:根據物質對不同波長的紫外線吸收程度不同而對物質組成進行分析的方法。此法所用儀器為紫外吸收分光光度計或紫外-可見吸收分光光度計。

光源發出的紫外光經光柵或棱鏡分光後,分別通過樣品溶液及參比溶液,再投射到光電倍增管上,經光電轉換並放大後,由繪制的紫外吸收光譜可對物質進行定性分析。

由於紫外線能量較高,故紫外吸收光譜法靈敏度較高;同時,本法對不飽和烯烴、芳烴、多環及雜環化合物具有較好的選擇性,故一般用於這些類別化合物的分析及相關污染物的監測。

如,水和廢水統一檢測分析法中,紫外分光光度法測定礦物油、硝酸鹽氮;以可變波長紫外檢測器作為檢測器的高壓液相色譜法測多環芳烴等。

(4)紫外煙氣分析監測方法擴展閱讀

紫外可見吸收光譜應用廣泛,不僅可進行定量分析,還可利用吸收峰的特性進行定性分析和簡單的結構分析,測定一些平衡常數、配合物配位比等;也可用於無機化合物和有機化合物的分析,對於常量、微量、多組分都可測定。

物質的紫外吸收光譜基本上是其分子中生色團及助色團的特徵,而不是整個分子的特徵。如果物質組成的變化不影響生色團和助色團,就不會顯著地影響其吸收光譜。

如甲苯和乙苯具有相同的紫外吸收光譜。另外,外界因素如溶劑的改變也會影響吸收光譜,在極性溶劑中某些化合物吸收光譜的精細結構會消失,成為一個寬頻。

所以,只根據紫外光譜是不能完全確定物質的分子結構,還必須與紅外吸收光譜、核磁共振波譜、質譜以及其他化學、物理方法共同配合才能得出可靠的結論。

E. 大氣污染物的監測方法是什麼

K-EP60大氣環境監測站即微型空氣質量在線監測系統,集成多類環境檢測感測器,實現實時監測氣象參數(溫度、濕度、大氣壓、風速、風向)與空氣八因子(PM2.5、PM10、CO、NOx、SO2、O3、VOC、可定製氣體)指數。本監測站使用太陽能電池供電,並使用鋰電池進行能源儲備,保證數據採集全天候進行。大氣環境監測站採集到現場數據通過無線3G/4G或有線網路將監測數據傳輸至監測平台,多台監測站分布於某片區域,組成一個有效的監測網路,並把數據通過監控平台展現給管理方,方便管理方制定環保決策。

F. 紅外和紫外cems煙氣分析系統的區別

是紫外的好。紫外的性能比紅外高,紫外精度高響應快。

G. 紫外與紅外這兩種光學方法分析煙氣成分到底有何區別

一種基於近紅外光譜的煙氣成分定量分析方法,採集火力發電廠煙氣信號構成現場歷史資料庫,資料庫包括火電廠煙氣在近紅外光的各個波長的吸收率和各成分濃度,採用異常點檢測

H. cems煙氣分析系統有紅外和紫外法哪個好

cemsso2析哪幾種
式M2(Ⅰ)M(Ⅱ)別價二價金屬離半鈉鈣n稱沸石硅鋁比硅主要自於硅酸鈉硅膠鋁則自於鋁酸鈉Al(HO)3等與氫氧化鈉水溶液反應制膠體物經乾燥便沸石般n=2~10m=0~9
沸石特點具篩作用均勻孔徑3A0、4A0、5A0、10A0細孔4A0孔徑4A0沸石吸附甲烷、乙烷吸附三碳烷烴已廣泛用於氣體吸附離、氣體液體乾燥及異烷烴離

I. 紫外—可見吸收光譜分析方法

4.3.1.1 定性分析

無機元素的定性分析應用紫外—可見分光光度法比較少,主要採用原子發射光譜法或化學分析法。在有機化合物的定性分析鑒定及結構分析方面,由於紫外-可見吸收光譜較為簡單,光譜信息少,特徵性不強,並且不少簡單官能團在近紫外光區及可見光區沒有吸收或吸收很弱,在應用時也有較大的局限性。但是,這種方法可適用於不飽和有機化合物,尤其是共軛體系的鑒定,以此推斷未知物的骨架結構。此外,還可配合紅外光譜法、核磁共振波譜法和質譜法等常用的結構分析法進行定性鑒定和結構分析,不失為一種有利的輔助方法。

吸收光譜的形狀、吸收峰的數目和位置及相應的摩爾吸光系數,是定性分析的光譜依據,而最大吸收波長λmax及相應的εmax是定性分析的最主要參數。比較法有標准物質比較法和標准譜圖比較法兩種。利用標准物質比較,在相同的測量條件下,測定和比較未知物與已知標准物的吸收光譜曲線,如果兩者的光譜完全一致,則可以初步認為它們是同一類化合物;利用標准譜圖或光譜數據比較,對於沒有標准物質或標准物質難於得到的物質,此方法適用。

4.3.1.2 結構分析

紫外—可見分光光度法可以進行化合物某些基團的判別,共軛體系及構型、構象的判斷。

(1)某些特徵基團的判別

有機物的不少基團(生色團),如羰基、苯環、硝基、共軛體系等,都有其特徵的紫外或可見光吸收帶,紫外-可見分光光度法在判別這些基團時,有時是十分有用的。如在270~300nm處有弱的吸收帶,且隨溶劑極性增大而發生藍移,就是羰基產生吸收帶的有力證據;在184nm附近有強吸收帶、204nm附近有中強吸收帶、260nm附近有弱吸收帶且有精細結構,則是苯環的特徵吸收,等等。

(2)共軛體系的判斷

共軛體系會產生很強的K吸收帶,通過繪制吸收光譜,可以判斷化合物是否存在共軛體系或共軛的程度。如果一化合物在210nm以上無強吸收帶,可以認定該化合物不存在共軛體系;若215~250nm區域有強吸收帶,則該化合物可能有兩至三個雙鍵的共軛體系,如1,3-丁二烯,λmax為217nm,εmax為21000;若260~350nm區域有很強的吸收帶,則可能有三至五個雙鍵的共軛體系,如癸五烯有五個共軛雙鍵,λmax為335nm,εmax為118000。

(3)異構體的判斷

包括順反異構及互變異構兩種情況的判斷。

順反異構體的判斷:生色團和助色團處於同一平面時,會產生最大的共軛效應。由於反式異構體的空間位阻效應小,分子的平面性較好,共軛效應強,因此λmax及εmax都大於順式異構體。

互變異構體的判斷:某些有機化合物在溶液中可能有兩種以上的互變異構體處於動態平衡中,這種異構體的互變過程常伴隨有雙鍵的移動及共軛體系的變化,因此會產生吸收光譜的變化。最常見的是某些含氧化合物的酮式與烯醇式異構體之間的互變。例如,乙醯乙酸乙酯就是酮式和烯醇式兩種互變異構體,它們的吸收特性不同,酮式異構體在近紫外光區時λmax為272nm(εmax為16000);烯醇式異構體的λmax則為243nm(εmax為16000)。兩種異構體的互變平衡與溶劑有密切關系,在像水這樣的極性溶劑中,由於羰基可能與H2O形成氫鍵以降低能量達到穩定狀態,所以酮式異構體占優勢;而在像乙烷這樣的非極性溶劑中,則形成分子內的氫鍵且形成共軛體系,以使能量降低達到穩定狀態,所以烯醇式異構體比率上升。

此外,紫外—可見分光光度法還可以判斷某些化合物的構象(如取代基是平伏鍵還是直立鍵)及旋光異構體等。

4.3.1.3 定量分析

紫外—可見分光光度法定量分析的常見方法有以下幾種。

(1)單組分的定量分析

如果在一個試樣中只要測定一種組分,且在選定的測量波長下,試樣中其他組分對該組分不幹擾,那麼進行單組分的定量分析較為簡單。一般有標准對照法和標准曲線法兩種。

標准對照法:在相同條件下,平行測定試樣溶液和某一濃度cS(應與試液濃度接近)的標准溶液的吸光度Ax和AS,則由cS可計算出試樣溶液中被測物質的濃度cx

AS=KcS,Ax=Kcx,cx=cSAx/AS

由於標准對照法僅使用單個標准,引起誤差的偶然因素較多,故結果往往較不可靠。

標准曲線法:是實際分析工作中最常用的一種方法。配製一系列不同濃度的標准溶液,以不含被測組分的空白溶液作為參比,測定標准系列溶液的吸光度,繪制吸光度-濃度曲線,稱為校準曲線(包括標准曲線或工作曲線)。在相同條件下測定試樣溶液的吸光度,從校準曲線上找出與之對應的未知組分的濃度。

此外,有時還可以採用標准加入法(做法與原子吸收光譜法相同)。

(2)多組分的定量分析

根據吸光度具有加和性的特點,在同一試樣中可以同時測定兩種或兩種以上的組分。假設要測定試樣中的兩種組分為A、B,如果分別繪制A、B兩純物質的吸收光譜,可能有三種情況,如圖4.12所示。圖4.12 a表明兩組分互不幹擾,可以用測定單組分的方法分別在λ1、λ2測定A、B兩種組分;圖4.12 b表明A組分對B組分的測定有干擾,而B組分對A組分的測定無干擾,則可以在λ1處單獨測量A組分,求得A組分的濃度cA,然後在λ2處測量溶液的吸光度及A、B純物質的和,根據吸光度的加和性則可以求出cB;圖4.12c表明兩組分彼此互相干擾,此時在λ1、λ2處分別測定溶液的吸光度

,而且同時測定A、B純物質的

,然後列出聯立方程,解得cA、cB

現代岩礦分析實驗教程

式中:Mr為衍生物的相對分子質量,扣除生色團的相對分子質量後得到該化合物的相對分子質量;l為吸收介質厚度(cm)。

(2)氫鍵強度的測定

溶劑效應對吸收光譜的影響表明,溶劑極性增大,會引起吸收帶的藍移和紅移,主要是由於溶質分子與溶劑分子的相互作用而引起的,如果它們之間具有可形成氫鍵的基團,則是由於形成氫鍵所引起的,因而可以通過吸收波長的移動程度來測定氫鍵的強度。

(3)在電化學研究方面的應用

分光光度法與電化學結合,構成了一個嶄新的研究領域——光譜電化學。光譜電化學技術包括透射技術、鏡反射技術和內反射技術三種。以分光光度法為測量手段,研究某些無機物、有機物和生物物質在電極上的電化學行為,可以同時獲得氧化還原體系的吸收光譜和氧化還原電位,以此研究所發生的電化學反應的歷程及動力學;還可以測定發生電化學反應所轉移的電子數、標准電位、摩爾吸光系數以及反應中間產物或最終產物的擴散系數等。光譜電化學發展很快,在研究無機、有機和生物化學氧化還原機理和均相反應動力學等方面將會發揮極大的作用。

J. 紫外法和紅外發測煙氣哪個更准確

摘要 你好,以下答案可以參考一下哦紅外氣體分析儀和煙氣分析儀的大致功能是一樣的,紅外氣體分析儀是屬於煙氣分析儀的一種。但是也有一點細微的區別。紅外氣體分析儀是基於氣體對紅外光吸收的郎伯--比爾吸收定律,採用國際上新的NDIR技術, 如電調制紅外光源、高靈敏度濾光感測一體化紅

閱讀全文

與紫外煙氣分析監測方法相關的資料

熱點內容
練腹肌的方法的圖片 瀏覽:526
多因素相關性分析方法步驟 瀏覽:426
帶骨肉塊的食用方法 瀏覽:122
桂花的鑒別方法 瀏覽:635
材料應力檢測方法 瀏覽:847
胭脂紅月季種植方法 瀏覽:345
簡便有效記憶方法 瀏覽:398
簡易南瓜餅的製作方法步驟 瀏覽:396
數字體溫計的使用方法 瀏覽:757
有什麼好方法剝銅線 瀏覽:585
熱敷乳房的正確方法圖 瀏覽:274
清代綠松石真假鑒別方法 瀏覽:246
手機玩音游斷觸解決方法 瀏覽:41
碳吸收量計算方法 瀏覽:758
如何評價張浦的這種學習方法 瀏覽:683
幼兒健康研究方法 瀏覽:168
有什麼方法能快速提高打字速度 瀏覽:731
教學案例研究方法 瀏覽:464
乾隆是海連接方法 瀏覽:17
許昌清除甲醛有哪些方法 瀏覽:120