導航:首頁 > 研究方法 > 常用大數據分析方法

常用大數據分析方法

發布時間:2022-03-01 17:20:35

Ⅰ 大數據分析方法,常用的哪些

數據分析的目的越明確,分析越有價值。明確目的後,需要梳理思路,搭建分析框架,把分析目的分解成若干個不同的分析要點,然後針對每個分析要點確定分析方法和具體分析指標;最後,確保分析框架的體系化(體系化,即先分析什麼,後分析什麼,使得各個分析點之間具有邏輯聯系),使分析結果具有說服力。

Ⅱ 大數據的數據分析方法有哪些如何學習

  1. 漏斗分析法

    漏斗分析模型是業務分析中的重要方法,最常見的是應用於營銷分析中,由於營銷過程中的每個關鍵節點都會影響到最終的結果,所以在精細化運營應用廣泛的今天,漏斗分析方法可以幫助我們把握每個轉化節點的效率,從而優化整個業務流程。

  2. 對比分析法

    對比分析法不管是從生活中還是工作中,都會經常用到,對比分析法也稱比較分析法,是將兩個或兩個以上相互聯系的指標數據進行比較,分析其變化情況,了解事物的本質特徵和發展規律。

    在數據分析中,常用到的分3類:時間對比、空間對比以及標准對比。

  3. 用戶分析法

    用戶分析是互聯網運營的核心,常用的分析方法包括:活躍分析,留存分析,用戶分群,用戶畫像等。在剛剛說到的RARRA模型中,用戶活躍和留存是非常重要的環節,通過對用戶行為數據的分析,對產品或網頁設計進行優化,對用戶進行適當引導等。

    通常我們會日常監控「日活」、「月活」等用戶活躍數據,來了解新增的活躍用戶數據,了解產品或網頁是否得到了更多人的關注,但是同時,也需要做留存分析,關注新增的用戶是否真正的留存下來成為固定用戶,留存數據才是真正的用戶增長數據,才能反映一段時間產品的使用情況,關於活躍率、留存率的計算。

  4. 細分分析法

    在數據分析概念被廣泛重視的今天,粗略的數據分析很難真正發現問題,精細化數據分析成為真正有效的方法,所以細分分析法是在本來的數據分析上做的更為深入和精細化。

  5. 指標分析法

在實際工作中,這個方法應用的最為廣泛,也是在使用其他方法進行分析的同時搭配使用突出問題關鍵點的方法,指直接運用統計學中的一些基礎指標來做數據分析,比如平均數、眾數、中位數、最大值、最小值等。在選擇具體使用哪個基礎指標時,需要考慮結果的取向性。

Ⅲ 數據分析常用的4大分析方法

1. 描述型分析:發生了什麼?


這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。


例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。


2. 診斷型分析:為什麼會發生?


描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。


良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。


3. 預測型分析:可能發生什麼?


預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。


預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。


4. 指令型分析:需要做什麼?


數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。


關於數據分析常用的4大分析方法的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅳ 常用的大數據分析方法

1. Analytic Visualizations(可視化分析)

不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。

2. Data Mining Algorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。

3. Predictive Analytic Capabilities(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。

4. Semantic Engines(語義引擎)
由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。

5. Data Quality and Master Data Management(數據質量和數據管理)

數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

Ⅳ 大數據分析方法有哪些

1、因子分析方法


所謂因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奧典型抽因法等等。


2、回歸分析方法


回歸分析方法就是指研究一個隨機變數Y對另一個(X)或一組變數的相依關系的統計分析方法。回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析方法運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。


3、相關分析方法


相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系。


4、聚類分析方法


聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,不需要事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。


5、方差分析方法


方差數據方法就是用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。


6、對應分析方法


對應分析是通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。

Ⅵ 數據分析師最常用的3大數據分析法

對比分析


首先是絕對值和相對值的對比,主要是它反映的是一個某段時間狀態,他可以反應一段時間內工作的成果。那麼要衡量這個成果的具體大小,就需要藉助環比和同比分析,通過同比和環比的分析,可以了解同期活動效果之間的差異,也可以了解上一個時期與這個時期的差別。


其次還可以通過橫向對比和縱向對比來分析,橫向對比的一個例子是在空間維度,即同種類型的不同對象,比如電商當中,我們經常把客戶分為新客和老客,不同客戶之間可能會有相同的指標,例如營業額、客單價等等。還有可能是不同時期、不同渠道之間的份額差異,通過這些,可以分析渠道之間的變化趨勢。


細分分析


細分分當中的第一點是分類分析,本質上還是化整為零,通過拆解不同的模塊進行單獨的分析,比如說我們可以劃分產品的類目、價格帶、折扣帶、年份等等,經過這樣劃分之後,什麼時候需要主打什麼樣的產品,就會又一個清晰的概念。


人-貨-場分析主要用於競品分析或者是競店分析,從客戶、商品、場景三個維度出發,分析自己的客戶和競品的客戶之間到底有什麼差別,找到差異點之後才能對競品進行精準打擊,把對方的客戶轉化為自己的客戶。


轉化分析


轉化分析的最常用的工具是漏斗模型,就是客戶從瀏覽、收藏、加購、支付、復購等等一系列的操作轉化,任何一個階段轉化率的變化就會引起結果的很大變化,而建立轉化路徑分析之後,就會很方便從結果推倒原因,從而進行針對性的優化。


關於數據分析師最常用的3大數據分析法,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅶ 常用的數據分析方法有哪些

數據分析落實到實處,一般就是圍繞用戶漏斗展開的。也就是人們常說的訪問-激活-留存-交易-推薦。

這核心的5步會有不同維度的細分。

獲客:來源、渠道、關鍵字、著陸頁、地域、設備、訪問時間、跳出率、訪問深度、停留時間、新客量等等;

激活:DAU(日活躍用戶)、MAU(月活躍用戶)

留存:日留存率、周留存率、月留存率

交易:訂單量、訂單金額、LTV

推薦:是否傳播(k>1)

需要獲取以上數據,可以通過ptengine通過漏斗細分得到可視化圖表。一般來講,同比(本周和上周)、環比(本月第一周和上月第一周)、定基比(所有數據和當年第一周)即可獲得數據的變化情況。

以上,其實不用很專業也能做好數據分析,獲取數據並不難,難的是你能洞察數據背後的意義。

Ⅷ 大數據分析的基本方法有哪些

1.可視化分析


不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。


2. 數據挖掘演算法


可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。


3. 預測性分析能力


數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。


4. 語義引擎


由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。


5. 數據質量和數據管理


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

Ⅸ 大數據 統計分析方法有哪些

您好朋友,上海獻峰科技指出:常用數據分析方法有,

  1. 聚類分析、

    2.因子分析、

    3.相關分析、

    4.對應分析、

    5.回歸分析、

    6.方差分析;

問卷調查常用數據分析方法:描述性統計分析、探索性因素分析、Cronbach』a信度系數分析、結構方程模型分析(structural equations modeling) 。 數據分析常用的圖表方法:柏拉圖(排列圖)、直方圖(Histogram)、散點圖(scatter diagram)、魚骨圖(Ishikawa)、FMEA、點圖、柱狀圖、雷達圖、趨勢圖。

希 望 採納不足可追問

閱讀全文

與常用大數據分析方法相關的資料

熱點內容
如何才能提高處事方法 瀏覽:943
新生兒黃疸嚴重高有無方法解決 瀏覽:436
科目二皮卡車側方位方法和技巧 瀏覽:449
wifi簡單破解的方法 瀏覽:346
測量馬的方法 瀏覽:617
北京女性鍛煉方法 瀏覽:642
治療腳痛風的方法 瀏覽:179
調查顧客有什麼方法 瀏覽:127
老師教學方法論 瀏覽:526
電子元件138m2的測量方法 瀏覽:615
真菌毒菌的檢測方法 瀏覽:54
牛津的研究方法 瀏覽:497
痤瘡用什麼治療方法好 瀏覽:468
巴菲特說保住本金的最佳方法 瀏覽:644
種胡蘿卜的看看這種方法怎麼樣 瀏覽:919
多種方法研究叫什麼 瀏覽:128
幾何壁紙安裝方法 瀏覽:634
什麼方法消腫最快臉部 瀏覽:578
華為手機垃圾清理最好的方法 瀏覽:307
鮮花盒子製作方法視頻 瀏覽:598