1. 氣相色譜法的分析方法
氣相色譜法的分析方法分為以下幾個步驟:
1、樣品的來源和預處理方法
GC能直接分析的樣品必須是氣體或液體,固體樣品在分析前應當溶解在適當的溶劑中,而且還要保證樣品中不含GC不能分析的組分(如無機鹽),可能會損壞色譜柱的組分。這樣,我們在接到一個未知樣品時,就必須了解的來源,從而估計樣品可能含有的組分,以及樣品的沸點范圍。如能確認樣品可直接分析。如果樣品中有不能用GC直接分析的組分,或樣品濃度太低,就必須進行必要的預處理,包括採用一些預分離手段,如各種萃取技術、濃縮和稀釋方法、提純方法等。
2、確定儀器配置
所謂儀器配置就是用於分析樣品的方法採用什麼進樣裝置、什麼載氣、什麼色譜柱以及什麼檢測器。
3、確定初始操作條件
當樣品准備好,且儀器配置確定之後,就可開始進行嘗試性分離。這時要確定初始分離條件,主要包括進樣量、進樣口溫度、檢測器溫度、色譜柱溫度和載氣流速。進樣量要根據樣品濃度、色譜柱容量和檢測器靈敏度來確定。樣品濃度不超過mg/mL時填充柱的進樣量通常為1-5uL,而對於毛細管柱,若分流比為50:1時,進樣量一般不超過2uL。進樣口溫度主要由樣品的沸點范圍決定,還要考慮色譜柱的使用溫度。原則上講,進樣口溫度高一些有利,一般要接近樣品中沸點的組分的沸點,但要低於易分解溫度。
4、分離條件優化
分離條件優化目的就是要在*短的分析時間內達到符合要求的分離結果。在改變柱溫和載氣流速也達不到基線分離的目的時,就應更換更長的色譜柱,甚至更換不同固定相的色譜柱,因為在GC中,色譜柱是分離成敗的關鍵。
5、定性鑒定
所謂定性鑒定就是確定色譜峰的歸屬。對於簡單的樣品,可通過標准物質對照來定性。就是在相同的色譜條件下,分別注射標准樣品和實際樣品,根據保留值即可確定色譜圖上哪個峰是要分析的組分。定性時必須注意,在同一色譜柱上,不同化合物可能有相同的保留值,所以,對未知樣品的定性僅僅用一個保留數據是不夠的,雙柱或多柱保留指數定性是GC中較為可靠的方法,因為不同的化合物在不同的色譜柱上具有相同保留值的幾率要小得多。
6、定量分析
要確定用什麼定量方法來測定待測組分的含量。常用的色譜定量方法不外乎峰面積(峰高)百分比法、歸一化法、內標法、外標法和標准加入法(又叫疊加法)。峰面積(峰高)百分比法*簡單,但*不準確。只有樣品由同系物組成、或者只是為了粗略地定量時該法才是可選擇的。相比而言,內標法的定量精度,因為它是用相對於標准物(叫內標物)的響應值來定量的,而內標物要分別加到標准樣品和未知樣品中,這樣就可抵消由於操作條件(包括進樣量)的波動帶來的誤差。至於標准加入法,是在未知樣品中定量加入待測物的標准品,然後根據峰面積(或峰高)的增加量來進行定量計算。其樣品制備過程與內標法類似但計算原理則完全是來自外標法。標准加入法定量精度應該介於內標法和外標法之間。
7、方法的驗證
所謂的方法驗證,就是要證明所開發方法的實用性和可靠性。實用性一般指所用儀器配置是否全部可作為商品購得,樣品處理方法是否簡單易操作,分析時間是否合理,分析成本是否可被同行接受等。可靠性則包括定量的線性范圍、檢測限、方法回收率、重復性、重現性和准確度等。
2. 氣相色譜分析方法有哪些定量方法
面積歸一化法、內標法、外標法。
面積歸一化法優點是簡便、准確,當操作條件變化時對結果影響較小,宜於分析多組分試樣中各組分的含量。但是試樣中所有組分必須全部出峰,因此,此法在使用中受到一定限制。
目前使用外標法較多。外標法是用純物質配成一系列不同濃度的標准溶液(或直接購買不同濃度標准溶液)分別取一定體積,注入色譜儀,根據峰面積和濃度做標准曲線。在分析未知樣時按與標准曲線相同的操作條件和方法,由標准曲線查出所需組分的濃度(現在在工作站上直接就能求出濃度)。此法要求進樣准確,操作條件穩定,分析樣品和標准曲線條件必須一致。
內標法是試樣中所有組分不能全部出峰或只要求測定試樣中某個或某幾個組分時,可採用此法。
內標法是在准確稱取一定量的試樣中,加入一定的標准物質(內標物),根據內標物和試樣的質量以及色譜圖上的相應峰面積,計算待測組分的含量。內標法的關鍵是選擇合適的內標物,內標物應是試樣中不存在的純物質,物質與被測物質相近,能溶於樣品中,但不能於樣品發生反應。此法比較費事,一般不使用於快速分析。
3. 氣相色譜有幾種定量方法各有何特點及使用范圍
氣相色譜的定量方法主要有:歸一化法、外標法、內標法、內標校正曲線、內標對比法和內加法等。
(1)歸一法:優點是簡便,定量結果與進樣量無關、操作條作變化時對結果影響較小,缺點時必須所有組分在一個分析周期內都能流出色譜柱,而且檢測器對它們都產生信號。該法不能用於微量雜質的合量測定。
(2)外標法:分為校正曲線法和外標一點法。外標法不必加內標物,常用於控制分析,分析結果的准確度主要取決於進樣的准確性和操作條件的穩定程度。
(3)內標法:由於操作條件變化面引起的誤差都將同時反映在內標物及欲測組分上而得到抵清,所以該法分析結果准確度高,對進樣量准確度的要求相對較低,可測定微量組分。但實際工作中,內標物的選擇需花費大量時間,樣品的配製也比較繁瑣。
(4)內標校正曲線法:該法消除了某些操作條件的影響,也不需嚴格要求進樣體積准確。
(5)標准加入法:在難以找到合適內標物或色譜圖上難以插入內標時可採用該法。
(3)氣相色譜通用分析方法擴展閱讀
原理
GC主要是利用物質的沸點、極性及吸附性質的差異來實現混合物的分離,其過程如圖氣相分析流程圖所示。
待分析樣品在汽化室汽化後被惰性氣體(即載氣,也叫流動相)帶入色譜柱,柱內含有液體或固體固定相,由於樣品中各組分的沸點、極性或吸附性能不同,每種組分都傾向於在流動相和固定相之間形成分配或吸附平衡。但由於載氣是流動的,這種平衡實際上很難建立起來。
也正是由於載氣的流動,使樣品組分在運動中進行反復多次的分配或吸附/解吸附,結果是在載氣中濃度大的組分先流出色譜柱,而在固定相中分配濃度大的組分後流出。
當組分流出色譜柱後,立即進入檢測器。檢測器能夠將樣品組分轉變為電信號,而電信號的大小與被測組分的量或濃度成正比。當將這些信號放大並記錄下來時,就是氣相色譜圖了。
4. 掌握氣相色譜分析的幾種定量方法,了解各自的優缺點
氣相色譜分析的定量方法:歸一法
各組分都能在色譜柱上得以分離並被檢測,流出色譜圖。
內標法
沒有合適的標准物質或方法定量時採用
外標法
適合單個或少數幾個組分的定量
5. 氣相色譜有哪幾種定量分析方法
面積歸一化法
校準面積歸一化法
內標法
外標法
標准加入法
6. 氣相色譜法定性分析有哪些方法
那就有好多,最常用的是:
1.質譜儀定性。(如果有質譜儀的話)
2.保留時間對比。但保留時間相同,並不一定就是同種物質。此時可用雙柱定性確證,若換了根不同極性的柱子,疑似組分的標樣與樣品的保留時間還是非常接近,那可以確認定性了。
3.純物質加入法,在樣品中加入待測的純物質,進樣,與前一個譜圖對比,你會發現一個峰變高了,而其他峰變低了,那這個組分就是待測物質。
還有很多,不是很常用的,不一一寫了。
7. 列舉幾個用其他分析方法難以解決,而用氣相色譜法比較容易解決的分析問題。
我先說說氣相色譜(GC)
常用來分析小分子的物質,分子量比較小,沸點地的容易汽化的物質。其餘的大分子物質用液相色譜(HPLC或UPLC)分析。
氣相色譜(GC)根據要檢測物質的特性,常用的檢測器分為:
1、FID(火焰離子化檢測器)小分子有機物。 如:乙烯,甲烷,苯系物
2、ECD(電子捕獲檢測器) 電負性強的有機小分子。 含F,Cl,等的
3、TCD檢測器{熱導檢測器}, 熱導系數差異較大的,不同的氣體有不同的熱導
系數。常檢測無機小分子,如:氮氣,二氧化碳。等
4:FPD(火焰光度檢測器):農殘,S,P化合物
5 NPD)氮磷檢測器)(NP Detector),檢測N,P
詳細如下:
幾種常見的檢測器
1.火焰光度檢測器FPD(Flame Photometric Detector)
火焰光度檢測器是利用在一定外界條件下(即在富氫條件下燃燒)促使一些物質產生化學發光,通過波長選擇、光信號接收,經放大把物質及其含量和特徵的信號聯系起來的一個裝置。
當含硫化合物進入氫焰離子室時,在富氫焰中燃燒,有機含硫化合物首先氧化成SO2,被氫還原成S原子後生成激發態的S2*分子,當其回到基態時,發射出350~430nm的特徵分子光譜,最大吸收波長為394nm。通過相應的濾光片,由光電倍增管接收,經放大後由記錄儀記錄其色譜峰。此檢測器對含S化合物不成線性關系而呈對數關系(與含S化合物濃度的平方根成正比)。
當含磷化合物氧化成磷的氧化物,被富氫焰中的H還原成HPO裂片,此裂片被激發後發射出480~600nm的特徵分子光譜,最大吸收波長為526nm。因發射光的強度(響應信號)正比於HPO濃度。
2.電子捕獲檢測器ECD(Electron Capture Detector)
當純載氣(通常用高純N2)進入檢測室時,受射線照射,電離產生正離子(N2+)和電子e-,生成的正離子和電子在電場作用下分別向兩極運動,形成約10-8A的電流——基流。加入樣品後,若樣品中含有某種電負性強的元素即易於電子結合的分子時,就會捕獲這些低能電子,產生帶負電荷陰離子(電子捕獲)這些陰離子和載氣電離生成的正離子結合生成中性化合物,被載氣帶出檢測室外,從而使基流降低,產生負信號,形成倒峰。倒峰大小(高低)與組分濃度呈正比,因此,電子捕獲檢測器是濃度型的檢測器。其最小檢測濃度可達10-14g/ml,線性范圍為103左右。
電子捕獲檢測器是一種高選擇性檢測器。高選擇性是指只對含有電負性強的元素的物質,如含有鹵素、S、P、N等的化合物等有響應.物質電負性越強,檢測靈敏度越高。
3.(氫)火焰離子化檢測器FID(Frame Ionization Detector)
由色譜柱流出的載氣(樣品)流經溫度高達2100℃的氫火焰時,待測有機物組分在火焰中發生離子化作用,使兩個電極之間出現一定量的正、負離子,在電場的作用下,正、負離子各被相應電極所收集。當載氣中不含待測物時,火焰中離子很少,即基流很小,約10-14A。當待測有機物通過檢測器時,火焰中電離的離子增多,電流增大(但很微弱10-8~10-12A)。需經高電阻(108~l011)後得到較大的電壓信號,再由放大器放大,才能在記錄儀上顯示出足夠大的色譜峰。該電流的大小,在一定范圍內與單位時間內進入檢測器的待測組分的質量成正比,所以火焰離子化檢測器是質量型檢測器。
火焰離子化檢測器對電離勢低於H2的有機物產生響應,而對無機物、久性氣體和水基本上無響應,所以火焰離子化檢測器只能分析有機物(含碳化合物),不適於分析惰性氣體、空氣、水、CO、CO2、CS2、NO、SO2及H2S等。
4.熱導檢測器TCD(Thermal Conctivity Detector)
5 氮磷檢測器NPD(NP Detector)
8. 氣相色譜法哪些參數可以用來定性和定量分析
色譜法進行定量計算時,可以選擇峰高或峰面積來進行。無論選用哪個參數,樣品中組分的含量C與此參數X都必須符合線性關系,即C=KX的關系。
根據檢測器響應機理和塔板理論,峰高與峰面積都應該滿足此關系。但由於峰形展寬等原因,對絕大多數檢測器來說,都是峰面積A與含量成正比。只有在峰形比較細高而且對稱較好的時候,選用峰高計算比較簡易。
氣相色譜法是利用要分離的諸組分在流動相(載氣)和固定相兩相間的分配有差異(即有不同的分配系數)。
當兩相作相對運動時,這些組分在兩相間的分配反復進行,即使組分的分配系數只有微小的差異,隨著流動相的移動可以有明顯的差距,最後使這些組分得到分離。
(8)氣相色譜通用分析方法擴展閱讀
1、氣相色譜分離中氣體流動相所起作用較小,主要基於溶質與固定相作用。根據所用固定相狀態不同。
2、氣相色譜的分離系統是色譜柱,它由柱管和裝填在其中的固定相等所組成。色譜柱是色譜儀的核心部件,決定了色譜的分離性能。按色譜柱粗細可分為一般填充色譜柱和毛細管色譜柱兩類。
3、氣相色譜檢測系統通常由檢測器組成,檢測器是一種指示測量各組分及其濃度變化的裝置。這種裝置把組分及其濃度變化以不同方式轉換成易於測量的電信號。