A. 什麼是多變數質量分析的一種方法
可以做因子分析.首先,先將A1到An用提取主成分分析的方法,形成一個因子,同理,對B項做同樣處理.其次,再在因子的層面上對兩個因子單變數方差分析(當然,如果存在多個自變數因子和多個因變數因子,可以用多變數方差分析).最後,如果想考察兩者的線性的數量關系,可以再做回歸分析.
因子分析的步驟:菜單欄"分析"——逗降維地——逗因子分析地,在變數框里分別選入變數,記住將因子得分保存為新的變數.
方差分析的步驟:分析——一般線性模型——單變數,將因變數選入逗因變數"框內,將自變數選入地固定因子逗框內,點確定.
回歸分析:分析——回歸.選擇線性或曲線模型.
B. 多變數綜合分析是什麼
多變數分析(multivariable analysis)是指多個變數統計分析技術在社會研究中的運用。又稱多元分析
C. 多變數模型分析法的文獻綜述
多變數分析為統計方法的一種,包含了許多的方法,最基本的為單變數,再延伸出來的多變數分析。統計資料中有多個變數(或稱因素、指標)同時存在時的統計分析,是統計學的重要分支,是單變數統計的發展。統計學中的多變數統計分析起源於醫學和心理學。1930年代它在理論上發展很快,但由於計算復雜,實際應用很少。1970年代以來由於計算機的蓬勃發展和普及,多變數統計分析已滲入到幾乎所有的學科。到80年代後期,計算機軟體包已很普遍,使用也方便,因此多變數分析方法也更為普及。
D. 多元分析的分析方法
包括3類:①多元方差分析、多元回歸分析和協方差分析,稱為線性模型方法,用以研究確定的自變數與因變數之間的關系;②判別函數分析和聚類分析,用以研究對事物的分類;③主成分分析、典型相關和因素分析,研究如何用較少的綜合因素代替為數較多的原始變數。 是把總變異按照其來源(或實驗設計)分為多個部分,從而檢驗各個因素對因變數的影響以及各因素間交互作用的統計方法。例如,在分析2×2析因設計資料時,總變異可分為分屬兩個因素的兩個組間變異、兩因素間的交互作用及誤差(即組內變異)等四部分,然後對組間變異和交互作用的顯著性進行F檢驗。
優點
是可以在一次研究中同時檢驗具有多個水平的多個因素各自對因變數的影響以及各因素間的交互作用。其應用的限制條件是,各個因素每一水平的樣本必須是獨立的隨機樣本,其重復觀測的數據服從正態分布,且各總體方差相等。 用以評估和分析一個因變數與多個自變數之間線性函數關系的統計方法。一個因變數y與自變數x1、x2、…xm有線性回歸關系是指:
其中α、β1…βm是待估參數,ε是表示誤差的隨機變數。通過實驗可獲得x1、x2…xm的若干組數據以及對應的y值,利用這些數據和最小二乘法就能對方程中的參數作出估計,記為╋、勮…叧,它們稱為偏回歸系數。
優點
是可以定量地描述某一現象和某些因素間的線性函數關系。將各變數的已知值代入回歸方程便可求得因變數的估計值(預測值),從而可以有效地預測某種現象的發生和發展。它既可以用於連續變數,也可用於二分變數(0,1回歸)。多元回歸的應用有嚴格的限制。首先要用方差分析法檢驗因變數y與m個自變數之間的線性回歸關系有無顯著性,其次,如果y與m個自變數總的來說有線性關系,也並不意味著所有自變數都與因變數有線性關系,還需對每個自變數的偏回歸系數進行t檢驗,以剔除在方程中不起作用的自變數。也可以用逐步回歸的方法建立回歸方程,逐步選取自變數,從而保證引入方程的自變數都是重要的。 把線性回歸與方差分析結合起來檢驗多個修正均數間有無差別的統計方法。例如,一個實驗包含兩個多元自變數,一個是離散變數(具有多個水平),一個是連續變數,實驗目的是分析離散變數的各個水平的優劣,此變數是方差變數;而連續變數是由於無法加以控制而進入實驗的,稱為協變數。在運用協方差分析時,可先求出該連續變數與因變數的線性回歸函數,然後根據這個函數扣除該變數的影響,即求出該連續變數取等值情況時因變數的修正均數,最後用方差分析檢驗各修正均數間的差異顯著性,即檢驗離散變數對因變數的影響。
優點
可以在考慮連續變數影響的條件下檢驗離散變數對因變數的影響,有助於排除非實驗因素的干擾作用。其限制條件是,理論上要求各組資料(樣本)都來自方差相同的正態總體,各組的總體直線回歸系數相等且都不為0。因此應用協方差分析前應先進行方差齊性檢驗和回歸系數的假設檢驗,若符合或經變換後符合上述條件,方可作協方差分析。 判定個體所屬類別的統計方法。其基本原理是:根據兩個或多個已知類別的樣本觀測資料確定一個或幾個線性判別函數和判別指標,然後用該判別函數依據判別指標來判定另一個個體屬於哪一類。
判別分析不僅用於連續變數,而且藉助於數量化理論亦可用於定性資料。它有助於客觀地確定歸類標准。然而,判別分析僅可用於類別已確定的情況。當類別本身未定時,預用聚類分析先分出類別,然後再進行判別分析。 解決分類問題的一種統計方法。若給定n個觀測對象,每個觀察對象有p個特徵(變數),如何將它們聚成若干可定義的類?若對觀測對象進行聚類,稱為Q型分析;若對變數進行聚類,稱為R型分析。聚類的基本原則是,使同類的內部差別較小,而類別間的差別較大。最常用的聚類方案有兩種。一種是系統聚類方法。例如,要將n個對象分為k類,先將n個對象各自分成一類,共n類。然後計算兩兩之間的某種「距離」,找出距離最近的兩個類、合並為一個新類。然後逐步重復這一過程,直到並為k類為止。另一種為逐步聚類或稱動態聚類方法。當樣本數很大時,先將n個樣本大致分為k類,然後按照某種最優原則逐步修改,直到分類比較合理為止。
聚類分析是依據個體或變數的數量關系來分類,客觀性較強,但各種聚類方法都只能在某種條件下達到局部最優,聚類的最終結果是否成立,尚需專家的鑒定。必要時可以比較幾種不同的方法,選擇一種比較符合專業要求的分類結果。 把原來多個指標化為少數幾個互不相關的綜合指標的一種統計方法。例如,用p個指標觀測樣本,如何從這p個指標的數據出發分析樣本或總體的主要性質呢?如果p個指標互不相關,則可把問題化為p個單指標來處理。但大多時候p個指標之間存在著相關。此時可運用主成分分析尋求這些指標的互不相關的線性函數,使原有的多個指標的變化能由這些線性函數的變化來解釋。這些線性函數稱為原有指標的主成分,或稱主分量。
主成分分析有助於分辨出影響因變數的主要因素,也可應用於其他多元分析方法,例如在分辨出主成分之後再對這些主成分進行回歸分析、判別分析和典型相關分析。主成分分析還可以作為因素分析的第一步,向前推進就是因素分析。其缺點是只涉及一組變數之間的相互依賴關系,若要討論兩組變數之間的相互關系則須運用典型相關。 先將較多變數轉化為少數幾個典型變數,再通過其間的典型相關系數來綜合描述兩組多元隨機變數之間關系的統計方法。設x是p元隨機變數,y是q元隨機變數,如何描述它們之間的相關程度?當然可逐一計算x的p個分量和y的q個分量之間的相關系數(p×q個), 但這樣既繁瑣又不能反映事物的本質。如果運用典型相關分析,其基本程序是,從兩組變數各自的線性函數中各抽取一個組成一對,它們應是相關系數達到最大值的一對,稱為第1對典型變數,類似地還可以求出第2對、第3對、……,這些成對變數之間互不相關,各對典型變數的相關系數稱為典型相關系數。所得到的典型相關系數的數目不超過原兩組變數中任何一組變數的數目。
典型相關分析有助於綜合地描述兩組變數之間的典型的相關關系。其條件是,兩組變數都是連續變數,其資料都必須服從多元正態分布。
以上幾種多元分析方法各有優點和局限性。每一種方法都有它特定的假設、條件和數據要求,例如正態性、線性和同方差等。因此在應用多元分析方法時,應在研究計劃階段確定理論框架,以決定收集何種數據、怎樣收集和如何分析數據資料。
E. 多個自變數對一個因變數用什麼方法分析
變數分析,就是把已知量放一邊,未知量放另一邊,按已知量的范圍來求未知量的范圍
F. 如何用spss進行多變數數據的統計分析
根據你的分析目的 確定分析思路,選擇對應的分析方法