導航:首頁 > 研究方法 > 金融數據分析方法

金融數據分析方法

發布時間:2022-02-17 09:56:58

1. 金融數據分析工作內容主要是什麼需要具備哪些技能後期是否有發展空間

1維護公司運營指標體系,根據業務線建立數據分析模型2研究用戶生命周期用戶畫像幾個人行為習慣,建立數學模型,理清關系的結論,寫分析報告3不斷完善和優化模型和數據分析結果。需要具備本科以上數學,統計計算機經濟相關專業,熟悉統計分析數據挖掘,熟悉SPSS. sad. stata等統計分析平能熟悉操作一種軟體3是具備獨立編寫數據分析報告能力,並能給出建議4具有數據挖掘相關項目實施經驗者優先考慮,後期有發展空間

2. 大數據分析的基本方法有哪些

1.可視化分析


不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。


2. 數據挖掘演算法


可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。


3. 預測性分析能力


數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。


4. 語義引擎


由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。


5. 數據質量和數據管理


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

3. 金融數據如何分析以及用到的工具

數據分析分好多種,現行的主要有兩種,基本面分析和技術分析。基本面分析又分好多種比如行業分析和公司分析等,所用的數據和處理數據的方式都有不同,技術分析也分很多種,如波浪理論、K線圖等,一般只用基本的畫線工具和簡單的數據處理公式(如ma,macd),普通的交易軟體一般自帶。

4. 如何進行互聯網金融運營數據的分析,都有哪些方法

作者:張溪夢 Simon
鏈接:https://www.hu.com/question/29185414/answer/110954989
來源:知乎
著作權歸作者所有

我們之前做過一期互聯網金融的公開課,「互聯網金融增長寶典:三大步驟提高轉化,搞定用戶運營」,主講人是 GrowingIO 的業務增長負責人徐主峰,曾任職 Criteo、Microsoft 等公司,有豐富的電商、互聯網金融客戶解決方案經驗。 這是公開課的速記整理。
這是一篇互聯網金融寶典,我推薦給所有轉化率只有 1%、總是為誰可能是你的購買用戶而犯愁的互聯網金融的高管、PM、市場運營和銷售們。本文通過實戰案例,手把手教你建立轉化指標、 梳理分析思路、提供分析步驟並最終建立用戶行為分析模型。

文 / 徐主峰

大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?

我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。

一 、互聯網金融用戶四大行為特徵

互聯網金融平台用戶有四大行為特徵:

第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:

而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。

二、互聯網金融用戶運營的三大步驟

針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:

1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
結合典型渠道特點,可以做一個象限圖:
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。

5. 如何用大數據分析金融數據

有大數據分析工具的,免費的,你找一下大數據魔鏡。

6. 數據分析架構及方法

數據分析架構及方法
一、以往的數據分析在今天的各類型企業中,數據分析崗位已經基本得到普及和認可,這個崗位的核心任務往往是支撐運營和營銷,將企業內部的數據,客戶的數據進行分析和總結,形成以往工作情況的量化表現,以及客戶的行為趨勢或特徵等。
如果從更宏觀的角度來認識數據分析崗位的話,每一個數據分析人員都明白,其實數據分析崗位要達到的目標就是希望通過數據來發現潛在的規律,進而幫助預測未來,這一點同數據挖掘的目標一致。那麼為什麼在大多數公司都已經具備的數據分析崗位基礎上,今天卻還是在反復提到數據挖掘這個概念,我們就需要來看看數據分析都有哪些是沒有做到的內容。
1數據分散
多數數據分析崗位在公司中的崗位設置是隸屬在單一業務部門中作為一個支撐崗,只有少數的公司是將數據分析作為一個獨立的部門。其差異性在於,前者的數據分析所能分析的內容僅限於自身部門所輸出的指標,比如投訴部門只看投訴處理過程中的數據,銷售部門只看銷售過程中的數據,一旦涉及到需要將各類指標匯總分析的情況,這種組織架構就會帶來極大的負面影響,由於不同部門具備自己部門指標導出的許可權,且與其他部門的配合並不影響績效任務,所以這種跨部門採集數據的過程往往效率奇低。而數據分析最關鍵的就在於匯集更多的數據和更多的維度來發現規律,所以以往的數據分析多是做最基礎的對比分析以及帕累托分析,少有使用演算法來對數據進行挖掘的動作,因為越少的指標以及越少的維度將會使得演算法發揮的效果越差。
2指標維度少
在以往的企業中,數字化管理更多的體現在日常運維工作中,對於客戶端的數據採集雖然從很早以前就已經開展,CRM系統的誕生已經有很久的時間了,但是一直以來客戶端的數據維度卻十分缺失,其原因在於上述這些途徑所獲得的數據多為客戶與企業產生交互之後到交互結束之間的數據,但是這段時間只是這個客戶日常生活中很少的一部分內容,客戶在微博,微信上的行為特點,關注的領域或是品牌,自身的性格特點等,可以說一個客戶真正的特點,習慣,僅通過與企業的交互是無從知曉的,因此難以挖掘出有效的結論。
3少使用演算法
在上述制約條件下,可想而知數據分析人員對於演算法的使用必然是較少的,因為數據分析依賴於大量的指標、維度以及數據量,沒有這三個條件是難以發揮演算法的價值的,而在排除掉演算法後,數據分析人員更多的只能是針對有限的數據做最為簡單的分析方法,得出淺顯易懂的分析結論,為企業帶來的價值則可以想像。
4數據分析系統較弱目前的數據分析多採用excel,部分數據分析人員能夠使用到R或SPSS等軟體,但當數據量達到TB或PB單位級別時,這些軟體在運算時將會消耗大量時間,同時原始的資料庫系統在導出數據時所花費的時間也是相當長的,因此對大數據量的分析工作,常規的系統支撐難以到達要求。
二、技術革命與數據挖掘
得益於互聯網對於人們生活的影響逐漸增大,我們發現數據正在瘋狂的增長。今天一個人一天的時間中有將近一半是在互聯網中度過的,一方面這些使用互聯網的交互都是能夠被捕捉記錄的,一方面由於碎片化時間的使用,客戶與企業交互的機會也變的越來越頻繁,進一步保障了客戶數據的豐富。同時在大數據技術的支撐下,今天的系統能夠允許對這些大規模的數據量進行高效的分析。
因此數據分析人員也能夠開始使用一些較為抽象的演算法來對數據做更為豐富的分析。所以數據分析正式進入到了數據分析2.0的時代,也就是數據挖掘的時代了。
三、數據處理流程
數據分析也即是數據處理的過程,這個過程是由三個關鍵環節所組成:數據採集,數據分析方法選取,數據分析主題選擇。這三個關鍵環節呈現金字塔形,其中數據採集是最底層,而數據分析主題選擇是最上層。
四、數據採集
數據採集即是如何將數據記錄下來的環節。在這個環節中需要著重說明的是兩個原則,即全量而非抽樣,以及多維而非單維。今天的技術革命和數據分析2.0主要就是體現在這個兩個層面上。
1全量而非抽樣由於系統分析速度以及數據導出速度的制約,在非大數據系統支撐的公司中,做數據分析的人員也是很少能夠做到完全全量的對數據進行收集和分析。在未來這將不再成為問題。
2多維而非單維另一方面則在於數據的維度上,這在前邊同樣提及。總之針對客戶行為實現5W1H的全面細化,將交互過程的什麼時間、什麼地點、什麼人、因為什麼原因、做了什麼事情全面記錄下來,並將每一個板塊進行細化,時間可以從起始時間、結束時間、中斷時間、周期間隔時間等細分;地點可以從地市、小區、氣候等地理特徵、渠道等細分;人可以從多渠道注冊賬號、家庭成員、薪資、個人成長階段等細分;原因可以從愛好、人生大事、需求層級等細分;事情可以從主題、步驟、質量、效率等細分。通過這些細分維度,增加分析的多樣性,從而挖掘規律。
五、數據分析方法選取數據分析方法是通過什麼方法去組合數據從而展現規律的環節。從根本目的上來說,數據分析的任務在於抽象數據形成有業務意義的結論。因為單純的數據是毫無意義的,直接看數據是沒有辦法發現其中的規律的,只有通過使用分析方法將數據抽象處理後,人們才能看出隱藏在數據背後的規律。
數據分析方法選取是整個數據處理過程的核心,一般從分析的方法復雜度上來講,我將其分為三個層級,即常規分析方法,統計學分析方法跟自建模型。我之所以這樣區分有兩個層面上的考慮,分別是抽象程度以及定製程度。
其中抽象程度是說,有些數據不需要加工,直接轉成圖形的方式呈現出來,就能夠表現出業務人員所需要的業務意義,但有些業務需求,直接把數據轉化成圖形是難以看出來的,需要建立數據模型,將多個指標或一個指標的多個維度進行重組,最終產生出新的數據來,那麼形成的這個抽象的結果就是業務人員所需要的業務結論了。基於這個原則,可以劃分出常規分析方法和非常規分析方法。
那麼另一個層面是定製程度,到今天數學的發展已經有很長的時間了,其中一些經典的分析方法已經沉澱,他們可以通用在多用分析目的中,適用於多種業務結論中,這些分析方法就屬於通用分析方法,但有些業務需求確實少見,它所需要的分析方法就不可能完全基於通用方法,因此就會形成獨立的分析方法,也就是專門的數學建模,這種情況下所形成的數學模型都是專門為這個業務主題定製的,因此無法適用於多個主題,這類分析方法就屬於高度定製的,因此基於這一原則,將非常規分析方法細分為統計學分析方法和自建模型類。
1常規分析方法常規分析方法不對數據做抽象的處理,主要是直接呈現原始數據,多用於針對固定的指標、且周期性的分析主題。直接通過原始數據來呈現業務意義,主要是通過趨勢分析和佔比分析來呈現,其分析方法對應同環比及帕累托分析這兩類。同環比分析,其核心目的在於呈現本期與往期之間的差異,如銷售量增長趨勢;而帕累托分析則是呈現單一維度中的各個要素佔比的排名,比如各個地市中本期的銷售量增長趨勢的排名,以及前百分之八十的增長量都由哪幾個地市貢獻這樣的結論。常規分析方法已經成為最為基礎的分析方法,在此也不詳細介紹了。
2統計學分析方法統計學分析方法能夠基於以往數據的規律來推導未來的趨勢,其中可以分為多種規律總結的方式。根據原理多分為以下幾大類,包括有目標結論的有指導學習演算法,和沒有目標結論的無指導學習演算法,以及回歸分析。
其中有指導的學習演算法簡單說就是有歷史數據里邊已經給出一個目標結論,然後分析當各個變數達到什麼情況時,就會產生目標結論。比如我們想判斷各項指標需要達到什麼水平時我們才認定這個人患有心臟病的話,就可以把大量的心臟病人的各項指標數據和沒有心臟病的正常人的各項指標數據都輸入到系統中,目標結論就是是否有心臟病,變數就是各項指標數據,系統根據這些數據算出一個函數,這個函數能夠恰當的描述各個指標的數據與最終這個是否是心臟病人之間的關系,也就是當各個指標達到什麼臨界值時,這個人就有心臟病的判斷,這樣以後再來病人,我們就可以根據各項指標的臨界值。這個案例中的函數就是演算法本身了,這其中的演算法邏輯有很多種,包括常見的貝葉斯分類、決策樹、隨機森林樹以及支持向量機等,有興趣的朋友可以在網上看看各種演算法的邏輯是怎麼樣的。
另外無指導的學習演算法因為沒有一個給定的目標結論,因此是將指標之中所有有類似屬性的數據分別合並在一起,形成聚類的結果。比如最經典的啤酒與尿布分析,業務人員希望了解啤酒跟什麼搭配在一起賣會更容易讓大家接受,因此需要把所有的購買數據都放進來,然後計算後,得出其他各個商品與啤酒的關聯程度或者是距離遠近,也就是同時購買了啤酒的人群中,都有購買哪些其他的商品,然後會輸出多種結果,比如尿布或者牛肉或者酸奶或者花生米等等,這每個商品都可以成為一個聚類結果,由於沒有目標結論,因此這些聚類結果都可以參考,之後就是貨品擺放人員嘗試各種聚類結果來看效果提升程度。在這個案例中各個商品與啤酒的關聯程度或者是距離遠近就是演算法本身了,這其中的邏輯也有很多中,包括Apriori等關聯規則、聚類演算法等。
另外還有一大類是回歸分析,簡單說就是幾個自變數加減乘除後就能得出因變數來,這樣就可以推算未來因變數會是多少了。比如我們想知道活動覆蓋率、產品價格、客戶薪資水平、客戶活躍度等指標與購買量是否有關系,以及如果有關系,那麼能不能給出一個等式來,把這幾個指標的數據輸入進去後,就能夠得到購買量,這個時候就需要回歸分析了,通過把這些指標以及購買量輸入系統,運算後即可分別得出,這些指標對購買量有沒有作用,以及如果有作用,那麼各個指標應該如何計算才能得出購買量來。回歸分析包括線性及非線性回歸分析等演算法。
統計學分析方法還有很多,不過在今天多用上述幾大類分析方法,另外在各個分析方法中,又有很多的不同演算法,這部分也是需要分析人員去多多掌握的。
3自建模型自建模型是在分析方法中最為高階也是最具有挖掘價值的,在今天多用於金融領域,甚至業界專門為這個人群起了一個名字叫做寬客,這群人就是靠數學模型來分析金融市場。由於統計學分析方法所使用的演算法也是具有局限性的,雖然統計學分析方法能夠通用在各種場景中,但是它存在不精準的問題,在有指導和沒有指導的學習演算法中,得出的結論多為含有多體現在結論不精準上,而在金融這種錙銖必較的領域中,這種演算法顯然不能達到需求的精準度,因此數學家在這個領域中專門自建模型,來輸入可以獲得數據,得出投資建議來。在統計學分析方法中,回歸分析最接近於數學模型的,但公式的復雜程度有限,而數學模型是完全自由的,能夠將指標進行任意的組合,確保最終結論的有效性。
六、數據分析主題選取
在數據分析方法的基礎上,進一步是將分析方法應用在業務需求中,基於業務主題的分析可以涉及太多的領域,從客戶的參與活動的轉化率,到客戶的留存時長分析,再到內部的各環節銜接的及時率和准確度等等,每一種都有獨特的指標和維度的要求,以及分析方法的要求,以我個人的經驗來看,主要分析主題都是圍繞著營銷、運營、客戶這三大角度來開展的。
1營銷/運營分析營銷運營分析多從過程及最終的成效上來進行分析,包括營銷活動從發布到客戶產生購買的過程的分析,運營從客戶開始使用到停止使用為止的過程中的分析,前者更傾向於分析客戶行為的變動趨勢,以及不同類型的客戶之間的行為差異,後者更傾向於分析在過程中服務的及時率和有效率,以及不同類型的客戶之間對於服務需求的差異。
在針對這部分分析主題時,多採用常規分析方法,通過同環比以及帕累托來呈現簡單的變動規律以及主要類型的客戶,但通過統計學分析方法,營銷分析可以根據有指導的學習演算法,得出營銷成功與營銷失敗之間的客戶特徵的差異,而運營分析則可以根據無指導的學習演算法,得出哪些特徵的客戶對哪些服務是有突出的需求的,另外營銷和運營分析都可以通過回歸分析來判斷,各項績效指標中,哪些指標是對購買以及滿意度有直接影響的。通過這些深入的挖掘,可以幫助指導營銷及運營人員更好的完成任務。
2客戶分析客戶分析除了與營銷和運營數據關聯分析時候使用,另外單獨對於客戶特徵的分析也是有很大價值的。這一部分分析更多需要通過統計學分析方法中的有指導和無指導的學習演算法,一方面針對高價值客戶,通過有指導的學習演算法,能夠看到哪些特徵能夠影響到客戶的價值高低,從而為企業鎖定目標客戶提供指導;另一方面針對全體客戶,通過無指導的學習演算法,能夠看到客戶可以大概分為哪幾種群落,針對每個群落的客戶展開焦點討論和情景觀察,從而挖掘不同群落客戶之間的需求差異,進而為各個群落的客戶提供精準營銷服務。 通過以上這些的操作,一個企業的數據分析或者說數據挖掘工作的完整流程就呈現了出來。可以看到,無論是數據採集,還是分析方法,亦或是分析主題,在大數據和互聯網的支撐基礎上,在未來都將有大幅度的增加,數據分析人員將成為下一個階段的關鍵企業支撐人員,也即是在未來,在各個領域中,都將產生大量的寬客,或者增長黑客這樣的數據分析人員,來帶動企業的發展。

7. 如何快速上手使用Python進行金融數據分析

所說所有的變數都是對象。 對象在python里,其實是一個指針,指向一個數據結構,數據結構里有屬性,有方法。

對象通常就是指變數。從面向對象OO的概念來講,對象是類的一個實例。在python里很簡單,對象就是變數。

class A:
myname="class a"
上面就是一個類。不是對象
a=A()
這里變數a就是一個對象。
它有一個屬性(類屬性),myname,你可以顯示出來
print a.myname

所以,你看到一個變數後面跟點一個小數點。那麼小數點後面

8. 如何用大數據分析金融數據

"現今查詢個人網貸大數據報告的話,在微信就能很快地查詢到,不僅全面詳細,還很安全方便,不用擔心會造成隱私泄露。

​查詢個人網貸大數據:

只需要打開微信首頁,搜索:深查數據。點擊查詢,輸入信息即可查詢到自己的徵信數據,該數據源自全國2000多家網貸平台和銀聯中心,用戶可以查詢到自身的大數據與信用情況,可以獲取各類指標,查詢到自己的個人信用情況,網黑指數分,黑名單情況,網貸申請記錄,申請平台類型,是否逾期,逾期金額,信用卡與網貸授信預估額度等重要數據信息等。"

9. 如何用Python做金融數據分析

所說所有的變數都是對象。 對象在python里,其實是一個指針,指向一個數據結構,數據結構里有屬性,有方法。 對象通常就是指變數。從面向對象OO的概念來講,對象是類的一個實例。在python里很簡單,對象就是變數

10. 金融行業有哪些領域需要運用數據分析

您好,我也是金融行業的,之前在做數據採集和分析的時候也是找了很多方法,後來是找的前嗅,他們公司自己的數據分析系統,還是很好用的,你不妨試試,他是從幾方面給我分析的:

1.宏觀經濟分析:國內外宏觀經濟數據分析、政策走勢分析、經濟形勢分析。
2.證券數據分析:通過建立數據模型,分析股票指數數據,預測股票走勢。
3.財務報表分析:通過建立分析模型,分析財務狀況,關聯公司之間的經濟往來情況。
4.投資項目評估:多維度分析投資項目,通過數據進行投資決策支持,減少投資風險。
希望對你有用。

閱讀全文

與金融數據分析方法相關的資料

熱點內容
腸胃癌治療方法 瀏覽:53
家庭教育中有哪些好的教育方法 瀏覽:772
解決分析方法應用中的技術問題 瀏覽:869
雙時間步方法的應用分析 瀏覽:570
測量血壓的方法與流程 瀏覽:847
雕花膠使用方法圖解 瀏覽:283
暖風機散熱器堵塞解決方法 瀏覽:900
盤式曝氣器安裝方法 瀏覽:301
38度6鍛煉方法 瀏覽:407
用化學方法鑒別苯丙醇苯乙醇 瀏覽:593
書法拼接方法技巧圖解 瀏覽:217
外傷大拇指摁住哪裡止血方法 瀏覽:807
量測血壓的正確方法 瀏覽:412
菠蘿種植方法視頻 瀏覽:1004
知到使用方法 瀏覽:751
橋架壓板的正確固定方法圖片 瀏覽:604
寶寶去風的方法是什麼 瀏覽:352
大熊貓飼養方法簡單 瀏覽:13
北海烤蝦的食用方法 瀏覽:116
手工花瓶的製作方法圖片 瀏覽:364