❶ 事件沉積學的研究方法
事件沉積學認為沉積物都是各種地質事件的記錄。可以說,正是地質事件的種類與規模的差異導致了沉積物的多樣性,因此對它們的研究手段也不同。針對事件沉積作用所形成的沉積岩與正常沉積作用所形成的沉積岩在研究方法上基本一致,主要包括兩大方面。
1.野外研究
野外研究主要是在露頭剖面上進行宏觀觀察和描述,主要觀察事件沉積發育的層位、厚度、垂向序列、岩石類型及其與正常沉積岩層的疊置關系等。並根據研究目的採取相關的樣品,為室內測試分析和綜合研究提供基礎資料。
2.室內研究
室內研究以顯微薄片為基礎,常量元素分析、微量元素發射光譜分析、粒度分析、礦物染色和以激發光分析、黏土礦物和碳酸鹽岩礦物X射線衍射分析為常規項目;其他項目如掃描電鏡和電子探針分析、熱分析、紅外吸收光譜分析、原子吸收光譜分析為補充項目或擴展項目;孔隙測量、透射電子顯微鏡、稀土元素分析、穩定同位素分析、有機質分析等為專項分析。
當然,在研究過程中室內採取何種測試分析方法,主要是根據研究任務、研究目的不同而採取不同的方法。
❷ 物理沉積模擬研究方法與步驟
對湖盆沉積砂體的形成與演變依據一定的科學准則對碎屑沉積砂體的形成與演變進行模擬是碎屑岩沉積學發展的重要邊緣分支學科,也是研究碎屑沉積體系分布的一條重要途徑。物理模擬研究就是將自然界真實的碎屑沉積體系從空間尺寸及時間尺度上都大大縮小,並抽取控制體系發展的主要因素,建立實驗模型與原型之間應滿足的對應量的相似關系。這種相似關系建立的基礎乃是一些基本的物理定律。如質量、動量和能量守恆定律等。
1.物理模擬研究的基本步驟
現在看來,碎屑沉積模擬一般可分為物理模擬和數值模擬兩個方面。物理模擬是數值模擬的基礎,可以驗證數值模擬的正確性;數值模擬反過來可以有效地指導物理模擬,使物理模擬具有一定的前瞻性。應當說,物理模擬與數值模擬相輔相成,對實際問題的解決可以起到相互促進的作用。
物理模擬是對自然界中的物理過程在室內進行模擬,其發展歷史已逾百年,在水文工程及河流地貌學上應用較廣,已經初步建立了一套理論基礎和實驗方法。至於開展碎屑沉積砂體形成過程及演變規律的物理模擬,還是近二十年的事情。應當承認,碎屑砂體沉積過程的物理模擬與水文工程的模擬是兩類不同性質的模擬過程。水文工程的物理模擬是在現今條件確定的情況下,預測未來幾十年內河道淤積演變對水文工程的影響,所涉及的時間跨度非常短暫;而碎屑砂體形成過程的物理模擬則是在沉積初始條件基本未知,依靠沉積結果反演沉積條件,從而逼近沉積過程的一種模擬。它所涉及的時間跨度是地質時代,一般在幾千至幾萬年甚至幾十萬年的時段內,因而研究難度比較大。值得指出的是,形成一個碎屑砂體的時間與該砂體形成後所經歷的更加漫長的成岩時間是兩個概念。碎屑物理模擬所考慮的時間是碎屑沉積體系的形成時間。
物理模擬的關鍵是要解決模型與原型之間相似性的問題,也就是說,實驗模型在多大程度上與原型具有可比性是成敗的標准。為此物理模擬實驗必須遵從一定的理論,這種理論可稱之為相似理論。模型與原型之間必須遵守的相似理論包括幾何相似、運動相似及動力相似。
碎屑物理模擬一般都在實驗裝置內進行,物理模擬的方法步驟可概括為如下步驟:
1)確定地質模型。所涉及的參數包括盆地的邊界條件(大小、坡度、水深、構造運動強度、波浪、基準面的變化等)、流速場的條件(流量、流速、含砂量等)、入湖或海河流的規模及分布、沉積體系的類型、碎屑體的粒度組成等。
2)確定物理模型。由於自然界中形成沉積體系的控制因素較多,確定物理模型的關鍵是抓住主要矛盾,而忽略一些次要因素。好的物理模型應當反映碎屑沉積體系的主要方面。物理模型的主要內容是確定模型與原型的幾何比例尺與時間比例尺、流場與粒級的匹配、活動底板運動特徵以及模型實驗的層次。
3)建立原型與模型之間對比標准。實驗開始前應確定每個層次的實驗進行到何種程度為止,是否進入下一個層次的模擬,所以確定合適的相似比十分重要。
4)明確所研究問題的性質。應當明確沉積學基礎問題的研究可以假設其他因素是恆定的,而重點研究單一因素對沉積結果的影響,但實際問題的解決往往是復雜的。各種因素之間是相互制約的,因此必須綜合考慮。一般應從沉積體系的范疇思考問題,而不能僅從某個單砂體著手就事論事。因為單砂體是沉積體系甚至是盆地的一部分。
5)確定實驗方案。即在物理模型的基礎上,進一步細化實驗過程,把影響碎屑沉積的主要條件落實到實驗過程的每一步,特別應注意實驗過程的連續性和可操作性。因為實驗開始後一旦受到某些因素的影響而被迫中斷,再重新開始時,該沉積過程是不連續的(除非在形成原型的過程中確實存在這種中斷),流場的分布將受到較大影響,因此,實驗開始前的充分准備是十分必要的。
6)適時對碎屑搬運沉積過程進行監控。因為沉積模擬研究是對地質歷史中沉積作用的重現,是對過程沉積學進行的研究。所以沉積過程的詳細記錄和精細描述是必需的,只有這樣才能深入研究過程與結果的對應性。
7)過程與結果的對應研究。實驗完成後對沉積結果的研究一般可採用切剖面的方法,對碎屑沉積體任一方向切片建立三維資料庫,並與沉積過程相對應,比較原型與模型的相似程度,從而對原型沉積時的未知砂體進行預測。目前已經做到的對比項目有相分布特徵、厚度變化、粒度變化、夾層隔層的連通性及連續性、滲流單元的分布等。
2.物理模擬的實驗方法
1)確定模擬區的規模及層位。在對模擬原型進行研究的基礎上,根據要求確定模擬的地質層位。若模擬區塊較大或模擬層段較厚,一般要進一步細分,才能保證模擬的精度。
2)確定模型的比尺。一般來說應保持x、y、z三個方向為同一比尺,即物理模型為正態模型,這樣可保證模擬結果的精度較高;若為變態模型,變率一般應小於5。
3)確定實驗裝置的有效使用范圍。當原型與模型的比尺確定後,實驗裝置上有效使用范圍便隨之確定。
4)確定原始底形。按實際資料,將模擬層位以下地層的底形按比例縮至實驗裝置內。
5)確定加砂組成。按模擬層位的粒度分析資料並加以確定。
6)確定洪水、平水、枯水的流量。一般根據模擬原型沉積時的氣候特點,結合現代沉積調查及水文記錄,概化出流量過程線,按流量過程施放水流。
7)湖水位控制。根據原型研究,按比例選擇合適的初始沉積時的湖水深度,另外,應確定每一階段的沉積過程是否在高位體系域、低位體系域或是水進水退體系域內進行,最好明確一種體系域變化為另一種體系域的時間長短,即變化速率,因為這關繫到實驗過程中湖水位的調節。
8)確定加砂量。一般洪水、平水、枯水的加砂量明顯不同,加砂量的確定應與流量過程匹配,並考慮水流能夠搬運為原則,同時應明確實驗過程為飽和輸砂還是非飽和輸砂。
9)含砂量控制。此參數是儲集砂體地質研究中不能獲得的參數,一般採用現代沉積調查的結果進行類比,按洪水期、平水期、枯水期分別設計,也可以設計為一個區間,按流量調節。
10)河道類型。國外物理模擬研究在實驗開始前,一般在原始底形上塑造模型小河,以使水流首先有一流道。該模型小河對以後的沉積作用不產生太大的影響。隨著實驗的進行、水流會自動調整。但一般若原型資料較好,在縮制原始底形時,已存在水流的通道不需要設置模型小河。
11)確定河岸組成。在需要設置模型小河時,應考慮河岸的組成,因為這關繫到河岸的抗沖性以及河道的遷移和決口。一般應考慮原型的特徵來設計。
12)活動底板控制。活動底板運動是地殼運動在實驗室內的表現,它從宏觀上控制了沉積作用的特徵和樣式。首先應明確原形沉積時構造運動的類型與性質、構造運動的強度與時期,這涉及活動底板運動的幅度和速率是否造成斷層及斷距的大小等。
13)過程監控。由於沉積模擬研究是對砂體的形成過程進行研究,所以實驗全過程的監控是分析對比過程與結果必不可少的,國內外一般採用與時間同步的電動照相機和對實驗過程全程錄像的方法,輔以詳細的觀察描述來對實驗過程進行跟蹤監控。
14)過程細化。將實驗過程細化為若干個沉積期,每一個沉積期對應一個單砂體或一個砂層組,每一期沉積過程結束後,詳細測量各種參數、邊界形態等。
15)剖面研究。實驗完成後,對沉積砂體進行縱、橫剖面的切片研究,並與過程相對應,最終與原型砂體進行對比,檢驗實驗結果的准確性。
16)整理各類資料、數據,為數值模擬研究提供必要的信息。
3.物理模擬的標准
碎屑沉積過程物理模擬成功與否的判別標准就是實驗模型與原型相似程度的高低。在油氣勘探階段,可以與地震剖面和測井曲線所反映出來的砂體類型和砂岩厚度進行對比。在油氣開發階段,可以與測井曲線和開發動態相比較。目前各類靜態參數(粒度、厚度、連續性、連通性、砂體延伸方向和規模、沉積相類型等)的符合率一般為70%,動態方面的對比尚沒有深入研究。
4.物理模擬的局限性
(1)尺度的限制
任何物理模擬實驗裝置由於受到場地及裝置大小的限制,不可能無限制地擴大規模。如果原型的幾何規模比較大,要想在室內實現模擬,就只有縮小比例,而任何比尺的過度縮小,都將造成實驗結果的失真和變形,導致原型與模型之間相似程度的降低。根據目前實驗水平,一般x、y方向的比例尺控制在1∶1000之內較合適。z方向的比尺控制在1∶200之內比較理想。實際工作中,一般使x、y、z方向比尺保持一致,即選用正態模型准確性較高。某些情況下,根據原型的形態特點,x、y、z方向的比尺允許不一致,即選用變態模型,但二者相差不宜太大,否則容易造成實驗結果的扭曲。
(2)水動力條件及氣候條件的限制
自然界碎屑沉積體系形成過程中,水動力條件非常復雜,有些條件在實驗室內難以實現,如潮汐作用、沿岸流、水溫分層、鹽度分異以及沉積過程中突然的雨雪氣候變化等影響因素,這些都在一定程度上影響了實驗過程的准確性。
(3)模型理論的限制
在物理模擬相似理論中,諸多相似條件有時並不能同時得到滿足,而某個條件的不滿足就可能導致實驗結果在一定程度上失真。例如,要使模型水流與原型水流完全相同,必須同時滿足重力相似與阻力相似,但二者是一對矛盾;又如懸浮顆粒的運動,現有模型中關於沉降速度的相似條件有沉降相似和懸浮相似,很顯然,二者也不可能同時滿足。因此實驗方案設計中,提取起主要作用的因素顯得十分重要。
盡管碎屑沉積體系的物理模擬存在上述許多局限,但它在促進實驗沉積學的發展、研究碎屑體系形成過程及演變規律、預測油氣儲集砂體的分布方面愈來愈顯示出它獨特的優勢。
❸ 沉積岩的研究方法
7.1.2.1 沉積岩區基本層序的調查
基本程序的調查是沉積岩區野外工作的基本內容。沉積岩區的區域地質調查和填圖應使用地層學與沉積學相結合的方法,即沉積地層的基本層序調查-區域地層格架調查-區域地層模型研究的方法。該方法體系的主要部分是描述性的。
(1)基本術語
基本層序(Primary sequence)基本層序是沉積地層垂向序列中按某種規律疊覆的單層組合,一般能在露頭范圍內觀察到,代表一定地層間隔的發育特點。基本層序內各單層在沉積時不一定完全連續,但其頂、底常由更明顯的侵蝕或突變界面限定。基本層序內各單層一般是有某種成因聯系的,是一個沉積過程不同階段的產物(圖7.4)
圖7.4 中侏羅世紅層基本層序
(據貴州省區域地質調查大隊資料編繪)
a、c分別為習水良村三岔場剖面上沙溪廟組42~46層和28~29層,a主要為辮狀河沉積,c為曲流河與洪泛平原沉積,其基本層序頂界依明顯的間斷面劃分(以密集鈣質結核為標志),由c-a可看出河流類型的變化;b為花溪老蛇沖剖面下-上沙溪廟組60~71層,各基本層序下部兼並現象十分明顯,說明更靠近盆地邊緣
基本層序是具體的、包含偶然性、地方性特色的描述實體。基本層序應根據可以看到的單層疊覆規律和界面特徵來劃分,而不受其成因或環境解釋的影響。法國人(J.布蘭,1977;Ch.鮑梅羅爾,1990)把這種組合稱為基本層序或層序(Sequence)。
基本層序內各單層一般是有某種成因聯系的,對查明一定地層間隔的成因、形成環境和沉積作用具有重要的意義。
相(Facies)相是一種具有特定特徵的岩石體(里丁,1985)。沉積地質學中的「相」具有不同含義,可以指沉積岩形成環境,如海相、北方相(古地理環境);可以指成因,如濁積岩相、風成相;可以指構造,如地槽相、磨拉石相等。這些都是根據岩石實體的岩性、古生物組合特徵等抽象出來的解釋性用法。就沉積岩來說,「相」是指具體的岩石,每一種相都必須有可觀察、可測量的特徵,包括顏色、層理、成分、結構、沉積構造、化石和成岩變化特徵等,如紅色板狀交錯層砂岩相。
地層學中的「相」常指岩石地層單位橫向變化或穿插時,某一有限部分的岩性與古生物等的綜合特徵,如砂質相、泥質相、鈣質相、筆石頁岩相、殼灰岩相等。泥質相可體現為泥岩占優勢的一套岩石組合,而非僅限於泥岩(圖7.5)。
圖7.5 地層學中常用的「相」概念示意圖
(據Wheeler and Mallory,1956;轉引自Krumbein and Sloss,1963,略有修改)
圖示兩個岩石地層單位,其一由灰岩組成,另一由頁岩及砂岩組成。頁岩及砂岩單位又分兩個「相」:c-e與d-f之間砂岩(>50%)為主,稱砂質相;其外側以頁岩(>50%)為主,稱泥質相。泥質相與砂質相分界在平面上的投影為c-d,與具體的岩石分界線a-b不同
相模式(Faciesmodel)相模式是對特定沉積環境或沉積作用或其產物普遍特徵的概括和簡化的表達形式。常見的相模式有直觀的環境模式,理想化的作用 -產物模式(垂向相模式)等。
基本層序與理想相模式之間的共同點,可以幫助解釋該層序的沉積環境和形成作用機制,預測其相鄰的環境與產物,以減少盲目性,增強預見性。
旋迴(Cycle)地質學中,把按一定順序變化並且反復重現的過程、產物或完成該過程經歷的時間稱作旋迴。一般認為,旋迴過程的條件演變是大體對稱的,其終點應有恢復到起點的條件。但也常有終點與起點條件極不相同的,如侵蝕旋迴、濁流旋迴等。可見按一定順序變化,並反復重現(不一定連續重現)是旋迴的主要鑒定依據。在沉積岩序列中,常有一系列岩層或不同級別的層序按一定順序疊覆且反復重現的現象,岩層的疊置順序多不對稱,也有少數對稱的,從而顯示出不同等級的非對稱或對稱旋迴(Asymmetri⁃cal /Symmetrical cycle)(圖7.6)。
韻律(Rhythm)「韻律」和「旋迴」常被當作同義詞。但嚴格地講,兩者含義不完全相同。韻律主要指一、兩種過程或岩石按一定間隔(常較小)和順序,穩定而頻繁的重現。如米蘭柯維奇韻律指頁岩-灰岩、泥灰岩-灰岩、泥灰岩-白堊或灰岩-白雲岩等層對(Bed couplet);而由4~6個層對組成的層束(Bundle),則應稱為旋迴。韻律的規律性疊覆可構成旋迴。
圖7.6 德國西南盆地中三疊世上殼灰岩上部層序
(據T.Aigner,1985,略有修改)
a—一次風暴作用產生的自旋迴性向上變細層序,底為強烈侵蝕面,頂為生物擾動層;b—一系列低級風暴向上變細層序疊置成高一級的向上變粗層序,相當該地層間隔的不對稱他旋迴性基本層序,其上部兼並現象十分明顯;c—一系列不對稱的向上變粗層序疊置成兩個再高一級的他旋迴性層序,一為向上變細的退積型層序,另一為向上變粗的進積型層序,它們又構成更高級的對稱他旋迴性層序。1—泥灰岩及生物潛穴;2—丘狀交錯層-砂紋層理的顆粒灰岩;3—平行層理顆粒灰岩;4—遞變層理顆粒灰岩;5—腕足類及海百合
《沉積學網路全書》建議:把兩種不同單層的交互稱「韻律」;而反復出現的、至少由三種不同單元組成的層序叫「旋迴」(R.W.Fairbridge and J.Bourgeois,1978)。
韻律沉積可能成為新的有效的高解析度測年工具(A.G.Fischer et al.,1990)。
(2)基本層序的類型
A.旋迴性基本層序
由於沉積作用本身具有自旋迴性,只要外界隨機因素的干擾不過分強大,沉積作用產物就會呈現旋迴性特點,所以沉積序列多帶有旋迴性。這也是識別、劃分基本層序的主要依據之一。旋迴性基本層序是由三個以上的單層按一定順序依次疊置而成的(圖7.7),多在一定地層間隔內反復重現(圖7.4)。因此,可以用基本層序的個數及代表性的單層組合來表示該地層間隔的組成與結構特徵。
這種基本層序多是某種周期性過程中他旋迴與自旋迴機制聯合作用(以前者為主)的產物,它不僅是解開沉積作用和環境之謎的鑰匙,而且其中一部分還可能成為詳細測時的工具。當然可以出現自旋迴性沉積,如一次風暴作用或一次沉積物重力流的產物等。
圖7.7 安徽巢湖地區寒武紀基本層序
(據安徽省區域地質調查隊資料編繪)
a—山凹丁組;b—冷泉王組;c—半湯組①具鳥眼藻紋層白雲層;②交錯層白雲岩;③波狀層理白雲岩;④砂屑白雲岩;⑤紋層狀白雲岩;⑥砂礫屑白雲岩;⑦鮞粒白雲岩;⑧含鹽假晶的白雲岩
單調的中、薄層狀韻律(如頁岩-灰岩,泥灰岩-灰岩,砂岩-頁岩等反復重現)沉積層序,可根據其中單層的特徵,如粒度、厚度、層理特徵、顏色、砂泥鈣質的富集趨勢、生物含量及活動遺跡和成岩特徵等的變化規律識別出旋迴性的基本層序(圖7.8)。
圖7.8 新疆尼勒克北於贊下石炭世阿克沙克組代表性基本層序
(據李永軍等,2014)
旋迴性基本層序還可以根據其單層宏觀疊覆特徵劃分:向上變細或向上變薄型(圖7.4),向上變粗或向上變厚型(圖7.9a)以及混合型(向上變粗再變細)等(圖7.9b)。
B.非旋迴性基本層序
凡肉眼看不出旋迴性特徵的地層間隔,如岩性均一的沉積、韻律性沉積和具有某種隨機重復出現的夾層的沉積等,均為非旋迴性地層序列。
圖7.9 蘇皖早石炭世高驪山組的基本層序
(據安徽省區域地質調查隊資料編繪)
a—向上變粗層序,安徽巢湖;b—1為向上變粗(淺灘化)層序,2為向上變粗(2a)又變細(2b)的混合型層序,南京孔山;c—基本層序1,2與b類似,3~5為向上變細(河相)層序,安徽宣城王胡村。其中a為淺海內陸棚沉積,b為河口附近的沉積,c為濱海平原沉積
識別和調查該類基本層序時,可遵循下述原則和方法:在理想的情況下,岩性均一的黏土頁岩、泥岩、某些礁灰岩等,以及非旋迴性的韻律沉積等,應以其中明顯的水下沉積間斷、沖刷面或陸表暴露面等為界來劃分基本層序。如其中的沉積間斷難以辨認,亦可採用一種變通辦法,即任取一段厚度不大的地層柱作為其基本層序,這樣也能較好地表示該地層間隔的組成及結構特徵。
具有某種隨機重復出現的夾層的地層間隔應根據較明顯的特殊沉積層,如沉積物重力流沉積、生物富集層或特殊岩性夾層的重復出現分出基本層序。
由上可見,「基本層序」與沉積學術語「相組合」(Facies association)在某些情況下是大體相當的,但比相組合的含義更廣。
(3)基本層序調查
A.調查內容
基本層序調查的目的是為了較准確、客觀地了解沉積序列的組成和結構,在此基礎上進行形成環境、沉積作用及其時空發展變化規律的研究。基本層序調查必須堅持客觀性和描述性原則,其野外調查一般應包括下列內容:
(a)單層成分:對於野外調查來說,這主要指各單層的岩石類型、特殊成分(如有用金屬礦物,磷、鐵、錳結核,海綠石,蒸發岩礦物等),以及古生物內容(包括實體化石和生物屑的類別與大致含量等,不能只對實體化石感興趣而忽略了對生物屑的觀察研究)。必要時,應在室內對岩石的礦物、常(微)量元素、穩定同位素和化學成分等做進一步研究。
(b)鑒別地層序列中特殊成分或成因的夾層:特殊成分或成因的夾層有生物化石富集層、地球化學異常層、含礦層、古風化殼、古土壤碳酸鹽岩序列中的石英砂岩或黏土岩夾層、隨機出現的塊體流沉積夾層、陸相沉積中的海相夾層、風暴沉積夾層、火山灰夾層等。後兩者往往還是重要的等時對比標志,有時可利用它們對地層剖面進行定量的時間對比(圖7.10)。
圖7.10 美國西部內陸盆地白堊紀地層的等時對比圖解
(據 E.G.Kauffman et al.,1988)
根據火山灰層(×)、生物化石的首、未現(○)和某些氣候旋迴層對(斷線)建立的等時對比;H表示間斷
(c)單層的結構、構造:包括單層的厚度、形態,岩石的沉積結構(主要是顆粒形態、大小及支撐結構等)與沉積構造,遺跡化石,古生態,古流向和成岩結構與構造(如帳篷構造、乾裂、內沉積物、窗格構造、各種成岩變化及膠結結構等)的研究。
(d)基本層序內各單層與基本層序間的疊覆特徵和接觸關系:查明基本層序內各單層間有無優選的疊覆方向,是否存在侵蝕兼並和沉積間斷等,以及基本層序之間的疊覆特點。單層界面的規律性分布,很可能指示具有一定時間含義的規律性過程的存在。
(e)基本層序的縱橫向變化:基本層序的縱橫向變化可以明確地指示環境變化(圖7.9)和高級別的旋迴特徵(圖7.6)。橫向延伸十分穩定的旋迴性基本層序還可能作為地層對比的物理標志來使用。在沉積岩區的區調工作中,查明各岩石地層單位基本層序的區域性縱橫向變化特徵是必不可少的。
(f)與理想的相模式對比:基本層序包含著各種局部環境、作用因素和隨機因素產物的自然層序,將其與理想相模式對比是非常重要的。與理想相模式的共同點可以幫助認識形成基本層序的沉積作用和環境特點,並起到預測作用;而與理想相模式的差異則說明這里還有地區性或隨機性的特殊地質作用、環境和過程需要進一步研究。
B.調查方法
實測地層剖面時調查基本層序的方法是定量研究各岩石地層單位基本層序的主要方法。在圖幅設計階段實測主幹地層剖面時要逐層描述,現場計算厚度,逐層做實測柱狀剖面圖,並以不同的符號、花紋、數據將各項調查內容准確地標注在柱狀圖上。柱狀圖的比例尺可以逐層任意選定。還要隨時注意與理想相模式對比,以提高野外調查研究的預見性,及時發現問題,補充採集必要的樣品和收集必要的野外資料。這樣才能在現場查明各岩石地層單位的基本層序的組成、結構、類型、厚度、數量、特殊夾層、重要間斷及它們的縱向變化特點,取全、取准第一手資料,為路線調查打好基礎。在填圖工作的後期如發現了新的情況,有必要測制輔助地層剖面時,對基本層序的調查研究方法與要求同上。
基本層序的路線調查方法是要查明實測主幹剖面中已知基本層序的空間變化情況,包括其組成、結構、類型、厚度及特殊夾層與重要間斷面的變化情況。發現並補充收集新類型的基本層序資料等,是路線調查時應完成的任務。填圖路線有主幹路線與輔助路線之分,兩類路線對基本層序的調查方法和要求略有差異。主幹路線應盡可能詳細觀察描述,對各岩石地層單位中發育最好的、新發現的、不同類型的代表性基本層序,均應現場做好柱狀剖面圖,並記錄其他必要的測量數據。記錄要圖表化,特殊夾層、重要間斷等要准確標定於野外手圖上。輔助路線只要求作最典型的、新的基本層序柱狀圖。
7.1.2.2 沉積岩的野外觀察與描述
(1)碎屑岩的野外觀察
A.成分
對復成分礫岩可選擇1~2m2的良好露頭,統計100~200 個粒徑3~4cm的礫石成分,計算其百分含量,以確定礫岩成分。並觀察其礫石大小在垂向上的變化及砂岩夾層,用以指示沉積旋迴和層理特徵。
對砂岩主要觀察砂級碎屑主要物質組分和岩石類型。
B.結構
觀察碎屑岩的顆粒形態,主要對圓度、球度和形態進行觀察。礫石顆粒形態判別方法是測定一定量礫石的長(A)、中(B)、短(C)軸,求礫石的等軸性指數(A+C)/2B,礫石的扁平系數(A+B)/2C。礫石的形狀用A、B、C三者的比例關系確定(圖7.11)。
圖7.11 顆粒或碎屑形態劃分
(據M.E.圖克爾,1984)
觀察碎屑岩的組構要選擇露頭良好點,測量數十個礫石長軸方位、扁平面傾向、傾角及礫岩層面產狀。砂岩可採集定向標本,測定砂粒的長軸方位,以研究其組構特徵。
C.構造
具有交錯層理的砂岩層主要測定層系組厚度、細層厚度、交錯層細層的最大傾角及傾向,層系組的產狀,以確定古流向,確定是交錯層還是交錯紋層(按層系厚度確定)。
交錯紋理主要觀察研究前積層的形態(板狀或槽狀);爬升交錯紋理,要查明逆流一側是侵蝕面還是未侵蝕面;區分水流沙波還是浪成沙波交錯紋理;觀察有無構成脈狀層理的泥質覆蓋物,波狀層理的泥質覆蓋層。
交錯層理主要觀察交錯層系的形態(槽狀、板狀或楔狀);前積層與層系底界面的交切關系(角度接觸或切線過渡);在底積層內查找交錯紋層(順流或逆流);在魚骨狀交錯層中查找水流改向證據;在交錯層中查找內部侵蝕面,分析是否為再作用面,找低角度層面,分析是否為側向加積作用面;分析交錯層是風成(交錯層系厚度大、細層傾角陡),還是海灘-前濱處形成的(削頂層系中的低角度交錯層),或小三角洲的推進所形成。
D.古流向的觀測
主要測定交錯層理的古流向,不對稱波痕較陡一側指示水流方向;槽模呈輻射狀散開一端指示水流方向;沖蝕槽可指示水流方向;長形礫石(延長率(A/B)至少為3:1)和化石常平行或垂直主流方向排列,其疊瓦狀分布也可指示水流方向。
(2)碳酸鹽岩的野外觀察
對碳酸鹽岩岩石,野外主要觀察岩石顏色、單層厚度、碳酸鹽岩中顆粒與泥灰岩的相對含量、顆粒類型(成因類型)及含量,沉積構造和層序特徵等。主要觀察風化面和新鮮面的顏色,加HCl的反應情況,岩石結構,盡快區分出是石灰岩還是白雲岩(白雲岩風化面呈灰黃-黑色,並有刀砍紋);岩層構造、層理類型(厚薄、明顯程度);區分喀斯特角礫和原生角礫岩;地質形態特徵,是層狀還是不規則狀,後者多為礁塊灰岩(白雲岩);根據岩性特徵、構造特徵和生物化石等確定成因標志。
碳酸鹽岩野外調查中,要分別對含非生物屑顆粒的碳酸鹽岩及含生物屑顆粒和生物化石的碳酸鹽岩、礁灰岩、結晶碳酸鹽岩進行不同方法和內容的觀測。
碳酸鹽岩手標本的鑒定與描述要求如下:
(a)顏色:一般以灰色、灰白色為主,但由於混入物成分及含量不同,則可形成不同的顏色。如深灰色或黑色為混入有機質、黃鐵礦;紫紅、褐紅等色為混入含水氧化鐵物質;很多白雲岩呈米黃色或褐色系,為含鐵白雲石所致,觀察描述要求與碎屑岩相同。
(b)礦物成分:碳酸鹽岩包括石灰岩(方解石含量>50%)和白雲岩(白雲石含量>50%)兩大類,故確定礦物成分意義極大。在標本上主要是根據加稀鹽酸(5%)試驗確定:①加稀鹽酸立即劇烈起泡並嘶嘶作響,說明岩石主要由方解石組成,應為石灰岩類;②若加稀鹽酸不起泡或粉末緩慢起泡,且條痕加鎂試劑變藍說明含鎂,應為白雲岩類;③若加稀鹽酸起泡反應後留下泥質物,則為泥灰岩類。其他如陸源礦物和自生礦物也應描述,並說明其賦存狀態。
(c)結構、構造:由於碳酸鹽岩的結構與岩石的成因有密切的關系,故不同成因的碳酸鹽岩就具有不同的結構特徵,在標本上觀察碳酸鹽岩的結構應先用稀鹽酸或水打濕後進行。若岩石斷口粗糙,並明顯看出由顆粒和填隙物兩部分組成,則岩石具粒屑(顆粒)結構,再進一步根據顆粒的特徵,確定顆粒的類型。若斷口緻密,平坦光滑,或呈貝殼狀,用放大鏡可見晶粒,則為微晶(泥晶)結構。如由群體生物骨架和其他共生生物組成的岩石,孔洞經常發育,並為粒屑沉積物、灰泥或亮晶,膠結物充填,則為生物骨架結構。若斷口呈「砂糖狀」,晶粒較粗者為晶粒結構,晶粒按其大小可進一步細分為巨晶、粗晶、中晶、細晶、極細(或粉)晶、微晶等結構。
碳酸鹽岩的構造除具有和碎屑岩相同的層理、波痕、乾裂等構造外,還有一些碳酸鹽岩所特有的構造,如疊層構造、鳥眼構造、縫合線構造及生物擾動構造等。
(d)岩石中含生物化石或生物碎屑的情況。
(e)填隙物特徵及含量:填隙物包括泥晶(灰泥)基質及亮晶膠結物。泥晶(微晶)基質是與顆粒同時沉積的直徑﹤0.031mm的碳酸鹽微細粒屑,為充填於格架顆粒之間的填隙物,也可起固結作用,泥晶基質在標本中呈污濁、渾暗、微晶泥狀;亮晶是干凈透明的方解石晶體,充填於粒間孔隙之中,對粒屑起膠結作用。若岩石全部由泥晶(微晶)組成,即具泥晶(微晶)結構,為泥晶(微晶)灰岩。
(f)膠結類型:指顆粒(屑)碳酸鹽岩,描述同碎屑岩。
(g)岩石命名:按結構成因分類命名原則確定岩石基本名稱。即顆粒含量>50%者為顆粒(屑)灰岩(白雲岩);顆粒含量<50%者為微晶灰岩(白雲岩)。再根據顏色,填隙物或特殊的自生礦物等綜合命名。對白雲岩可按白雲化強度及殘余的結構特徵進行命名。
❹ 沉積學分析的基本思路
沉積學分析除上述基本法則外,現代沉積學研究應遵循以下幾個方面的基本思路。
1.創新是科學研究的靈魂
創新是沉積學研究、學科發展和永葆生命力的不二法寶。沉積學創新應圍繞和突出科學問題,運用野外和實驗室所取得的已知信息,不斷突破常規與已有模式和定論的約束,發現或產生某種新穎獨特的新概念、新認識、新理論、新方法和新模式。
創新的本質是突破,即突破思維定式、常規戒律。創新活動的核心是「新」,它或者是概念與認識的更新或否定,或者是新的發現與發明,或者是理論與模式的重新定義,或者是方法技術手段的變革,或者是內容表現形式的創造和完善。沉積學真正意義上的創新,要改變「跟蹤式」、「引進式」與「熱點式」科研模式,同時要實現理論體系和方法技術體系的相互促進與提高,以方法技術帶動科學發展,促進理論創新,而理論研究反過來促進實驗技術方法的新發明、新創造。
2.系統地球科學觀方法
地球系統是由大氣圈、水圈、陸圈(岩石圈、地幔、地核)和生物圈(包括人類)組成的有機整體。系統地球科學觀就是要以地球系統為整體,研究組成地球系統的子系統之間相互聯系、相互作用機制,研究地球系統的變化規律和控制這些變化的機理,從而為全球變化預測及地球系統的科學管理提供理論依據。
沉積學研究要充分應用系統地球科學觀,從地球系統角度審視每一個沉積過程與地球系統的相關聯系。例如,大地構造沉積學就是一個非常好的例子,它是沉積學運用系統地球科學觀的方法,研究區域或全球沉積作用與沉積過程的非常重要的分支學科。研究西藏羌塘盆地中生代盆地演化,如果不與全球特提斯洋的演化聯系起來,也就很難真正了解盆地形成演化的過程與機制,甚至做出一些相互矛盾的結論;研究華南新元古代裂谷盆地,如果不與華南古大陸及Rodinia古大陸的裂解過程聯系起來,也就很難理解盆地形成演化地球動力學機制,使研究的意義和成果難以提高和深化。這就要求,不但要闡明研究對象本身的物質組成、控制物質轉換的機制,而且還要應用系統地球科學觀,從地球系統的角度,研究各子系統之間的相互聯系及相互作用機制,揭示改變固體地球外層的營力和改造地球表層的地球動力學機制,從而為地球資源、環境和生命演化歷史研究提供理論依據。
近年來,以系統地球科學觀為指導的理論體系,對沉積學的發展產生了深刻的影響,基於全球變化及地球動力學原理,以大地構造沉積學研究方法,來重新認識和解釋沉積作用和沉積規律,例如,超大陸(如 Pangea,Gondwana,Laurasia,Rodinia,Columbia,Kenorland等)的形成、地幔柱與超大陸解體、雪地球與全球冰川活動、全球氣候突變事件、大洋缺氧事件、大洋分層事件、星球撞擊事件、凝灰沉積事件、生物滅絕事件,以及米蘭柯維奇旋迴等,這些都已成為沉積學研究的重大課題。
3.大地質觀(One Geology)研究思路
大地質研究計劃是近年來地學界倡導的一種全球性地學研究思路,2006年由英國地質調查局首先發起,並作為2008年第33屆國際地質大會(IGC)的大會主題,其理論依據是系統地球科學觀的具體化。大地質的主要目標是實現全球地質資料與數據的共享平台,推進地球科學數據的交流與互用,進一步提升數字地圖及數據的網路快捷傳播,構建地球科學專業知識和專門技術全球共享網路系統。
大地質觀既給我國地質學發展提出了挑戰,同時又提供了很好的發展機遇。一方面,必須打破國家及地區壁壘,建立一體化的全球地質調查和數據共享機制,實現全球尺度的地球科學專門知識、技術及數據的平等共享;另一方面,區域性數據共享,對於研究地球系統問題,如全球氣候變化、全球事件、大陸動力學等創新性研究提供了領先平台。因此,大地質全球性網路數據系統和數字空間平台,對沉積學許多創新性研究具有極為重要的意義。
4.多學科交叉滲透研究
學科交叉滲透日益成為自然科學研究與創新的重要途徑與手段。首先,沉積(岩石)學研究應該與地質學本身其他分支學科相互交叉滲透,這是沉積學學科發展的要求,也是沉積學研究的最基本方法,例如,與大地構造學、地層學、岩石學、石油地質學、礦床學(特別是沉積層控礦床)、地震地質學、古生物學、古氣候學、古地理學等交叉滲透;其次,沉積學與一些其他相關學科的交叉滲透,形成一些新的分支學科。例如,沉積學與水力學的結合,形成了沉積動力學;沉積學與物理、化學、熱力學及有機化學結合,形成了儲層沉積學及有機地球化學;沉積學與地震學結合,形成了地震地層學及露頭層序地層學等。
5.實驗與方法技術的充分應用
測試分析技術的應用,是深化野外基本認識和升華自然科學規律的重要手段與方法。要充分利用上一節介紹的實驗室分析測試成果,主要包括礦物成分與結構實驗方法、同位素實驗方法、化學成分測試分析方法、有機地球化學實驗方法,以及其他實驗方法等成果數據,開展綜合研究以提高和深化科學研究的水平。
近年來,沉積學研究中還引進了大量新技術方法,如離子探針定年技術、遙感技術、Lidar技術、Insar干涉雷達技術、地震數據處理技術等。目前,大型水槽模擬實驗、成岩模擬實驗,以及計算機盆地模擬技術等,都試圖從反演和正演兩種途徑,再現沉積物和沉積岩形成的全過程,重溯成層岩石圈形成和成礦的歷史、分布規律及盆地地層時空三維特徵,從定性研究向定量研究發展。