Ⅰ 應用時間序列分析有哪幾種方法
時間序列分析常用的方法:趨勢擬合法和平滑法。
1、趨勢擬合法就是把時間作為自變數,相應的序列觀察值作為因變數,建立序列值隨時間變化的回歸模型的方法。包括線性擬合和非線性擬合。
線性擬合的使用場合為長期趨勢呈現出線形特徵的場合。參數估計方法為最小二乘估計。
非線性擬合的使用場合為長期趨勢呈現出非線形特徵的場合。其參數估計的思想是把能轉換成線性模型的都轉換成線性模型,用線性最小二乘法進行參數估計。實在不能轉換成線性的,就用迭代法進行參數估計。
2、平滑法是進行趨勢分析和預測時常用的一種方法。它是利用修勻技術,削弱短期隨機波動對序列的影響,使序列平滑化,從而顯示出長期趨勢變化的規律 。
(1)序列分析方法擴展閱讀
時間序列分析的主要用途:
1、系統描述
根據對系統進行觀測得到的時間序列數據,用曲線擬合方法對系統進行客觀的描述。
2、系統分析
當觀測值取自兩個以上變數時,可用一個時間序列中的變化去說明另一個時間序列中的變化,從而深入了解給定時間序列產生的機理。
3、預測未來
一般用ARMA模型擬合時間序列,預測該時間序列未來值。
4、決策和控制
根據時間序列模型可調整輸入變數使系統發展過程保持在目標值上,即預測到過程要偏離目標時便可進行必要的控制。
Ⅱ 時間序列的分析方法
以時間序列號為自變數,事件為因變數(非數量化的因子要數量化) ,建立合適的數學模型!分析推導(或看趨勢,或預測未來數量等) !aqui te amo。
Ⅲ 時間序列分析法的簡介
它包括一般統計分析(如自相關分析,譜分析等),統計模型的建立與推斷,以及關於時間序列的最優預測、控制與濾波等內容。經典的統計分析都假定數據序列具有獨立性,而時間序列分析則側重研究數據序列的互相依賴關系。例如,記錄了某地區第一個月,第二個月,……,第N個月的降雨量,利用時間序列分析方法,可以對未來各月的雨量進行預報。
隨著計算機的相關軟體的開發,數學知識不再是空談理論,時間序列分析主要是建立在數理統計等知識之上,應用相關數理知識在相關方面的應用等。
Ⅳ 時間序列分析法的介紹
時間序列分析(Time series analysis)是一種動態數據處理的統計方法。該方法基於隨機過程理論和數理統計學方法,研究隨機數據序列所遵從的統計規律,以用於解決實際問題。
Ⅳ 序列分析是什麼意思
用隨機過程理論和數理統計學方法,研究隨機數據序列所遵從的統計規律,以用於解決實際問題。由於在多數問題中,隨機數據是依時間先後排成序列的,故稱為時間序列。它包括一般統計分析(如自相關分析、譜分析等),統計模型的建立與推斷,以及關於隨機序列的最優預測、控制和濾波等內容。經典的統計分析都假定數據序列具有獨立性,而時間序列分析則著重研究數據序列的相互依賴關系。後者實際上是對離散指標的隨機過程的統計分析,所以又可看作是隨機過程統計的一個組成部分。例如,用x(t)表示某地區第t個月的降雨量,{x(t),t=1,2,…}是一時間序列。對t=1,2,…,T,記錄到逐月的降雨量數據x(1),x(2),…,x(T),稱為長度為T的樣本序列。依此即可使用時間序列分析方法,對未來各月的雨量x(T+l)(l=1,2,…)進行預報。時間序列分析在第二次世界大戰前就已應用於經濟預測。二次大戰中和戰後,在軍事科學、空間科學和工業自動化等部門的應用更加廣泛。
就數學方法而言,平穩隨機序列(見平穩過程)的統計分析,在理論上的發展比較成熟,從而構成時間序列分析的基礎。
Ⅵ 時間序列分析方法一般屬於
時間序列分析方法一般屬於定量預測方法。
時間序列分析是定量預測方法之一。它包括一般統計分析,統計模型的建立與推斷,以及關於時間序列的最優預測、控制與濾波等內容。時間序列分析側重研究數據序列的互相依賴關系。是對離散指標的隨機過程的統計分析,所以又可看作是隨機過程統計的一個組成部分。
(6)序列分析方法擴展閱讀:
時間序列分析方法的基本思想是根據系統的有限長度的運行記錄(觀察數據),建立能夠比較精確地反映序列中所包含的動態依存關系的數學模型,並藉以對系統的未來進行預報。
時間序列分析方法的基本原理是承認事物發展的延續性。應用過去數據,就能推測事物的發展趨勢;考慮到事物發展的隨機性。任何事物發展都可能受偶然因素影響,為此要利用統計分析中加權平均法對歷史數據進行處理。
Ⅶ 《論時間序列分析方法及其在會計專業中的應用
摘要 親~這道題由我來回答,打字需要一點時間,還請您耐心等待一下~
Ⅷ (三)時間序列分析的基本方法
1.模型的選擇和建模基本步驟
(1)建模基本步驟
1)用觀測、調查、取樣,取得時間序列動態數據。
2)作相關圖,研究變化的趨勢和周期,並能發現跳點和拐點。拐點則是指時間序列從上升趨勢突然變為下降趨勢的點,如果存在拐點,則在建模時必須用不同的模型去分段擬合該時間序列。
3)辨識合適的隨機模型,進行曲線擬合。
(2)模型的選擇
當利用過去觀測值的加權平均來預測未來的觀測值時,賦予離得越近的觀測值以更多的權,而「老」觀測值的權數按指數速度遞減,稱為指數平滑(exponential smoothing),它能用於純粹時間序列的情況。
對於短的或簡單的時間序列,可用趨勢模型和季節模型加上誤差來進行擬合。對於平穩時間序列,可用自回歸(AR)模型、移動平均(MA)模型或其組合的自回歸移動平均(ARMA)模型等來擬合。
一個純粹的AR模型意味著變數的一個觀測值由其以前的p個觀測值的線性組合加上隨機誤差項而成,就像自己對自己回歸一樣,所以稱為自回歸模型。
MA模型意味著變數的一個觀測值由目前的和先前的n個隨機誤差的線性的組合。
當觀測值多於50個時一般採用ARMA模型。
對於非平穩時間序列,則要先將序列進行差分(Difference,即每一觀測值減去其前一觀測值或周期值)運算,化為平穩時間序列後再用適當模型去擬合。這種經差分法整合後的ARMA模型稱為整合自回歸移動平均模型(Autoregressive Integrated Moving Average),簡稱ARIMA模型(張文彤,2002;薛薇,2005;G.E.P.Box et al.,1994)。
ARIMA模型要求時間序列滿足平穩性和可逆性的條件,即序列均值不隨著時間增加或減少,序列的方差不隨時間變化。但由於我們所關注的地層元素含量變化為有趨勢和周期成分的時間序列,都不是平穩的,這就需要對其進行差分來消除這些使序列不平穩的成分。所以我們選擇更強有力的ARIMA模型。
2.平穩性和周期性研究
有些數學模型要檢驗周期性變化是否為平穩性過程,即其統計特性不隨時間而變化,我們可根據序列圖、自相關函數圖、偏自相關函數圖和譜密度圖等對序列的平穩性和周期性進行識別。當序列圖上表現有明顯分段特徵時可採用分段計演算法,若分段求得的每段頻譜圖基本一致或相似,則認為過程是平穩的,否則是非平穩的。
自相關函數ACF(Autocorrelations function)是描述序列當前觀測值與序列前面的觀測值之間簡單和常規的相關系數;而偏自相關函數PACF(Partial autocorrelations function)是在控制序列其他的影響後,測度序列當前值與某一先前值之間的相關程度。
平穩過程的自相關系數和偏自相關系數只是時間間隔的函數,與時間起點無關,都會以某種方式衰減趨近於0。
當ACF維持許多期的正相關,且ACF的值通常是很緩慢地遞減到0,則序列為非平穩型。
序列的自相關-偏自相關函數具有對稱性,即反映了周期性變化特徵。
3.譜分析
確定性周期函數X(t)(設周期為T)在一定條件下通過傅里葉(Fourier)級數展開可表示成一些不同頻率的正弦和餘弦函數之和(陳磊等,2001),這里假設為有限項,即:
洞庭湖區第四紀環境地球化學
其中,頻率fk=k/T,k=1,2,…,N。
上式表明:如果拋開相位的差別,這類函數的周期變化完全取決於各餘弦函數分量的頻率和振幅。換句話說,我們可以用下面的函數來表示X(t)的波動特徵:
洞庭湖區第四紀環境地球化學
函數p(f)和函數X(t)表達了同樣的周期波動,兩者實際上是等價的,只不過是從頻域和時域兩個不同角度來描述而已。稱p(f)為X(t)的功率譜密度函數,簡稱譜密度。它不僅反映了X(t)中各固有分量的周期情況,還同時顯示出這些周期分量在整體X(t)中各自的重要性。具體說,在X(t)中各周期分量的對應頻率處,譜密度函數圖應出現較明顯的凸起,分量的振幅越大,峰值越高,對X(t)的整體影響也越大。
事實上,無論問題本身是否具有周期性或不確定性(如連續型隨機過程或時間序列)都可以採用類似的方法在頻域上加以描述,只是表示的形式和意義比上面要復雜得多。時間序列的譜分析方法就是要通過估計時間序列的譜密度函數,找出序列中的各主要周期分量,通過對各分量的分析達到對時間序列主要周期波動特徵的把握。
根據譜分析理論,對一個平穩時間序列{Xt},如果其自協方差函數R(k)滿足
如何從實際問題所給定的時間序列 {Xt,t=1,2,…,n} 中估計出其譜密度或標准譜密度函數是譜分析要解決的主要問題。本書採用圖基-漢寧(Tukey-Hanning)窗譜估計法。
Ⅸ 如何進行序列分析
你去ncbi吧,上面可以進行DNA序列的分析,我們一般分析啟動子上又什麼元件啊之類的都在上面,不過你可能需要讓他人教一下才會用的。
Ⅹ 時間序列預測方法有哪些分類,分別適合使用的情況是
時間序列預測方法根據對資料分析方法的不同,可分為:簡單序時平均數法、加權序時平均數法、移動平均法、加權移動平均法、趨勢預測法、指數平滑法、季節性趨勢預測法、市場壽命周期預測法等。
1、簡單序時平均數法只能適用於事物變化不大的趨勢預測。如果事物呈現某種上升或下降的趨勢,就不宜採用此法。
2、加權序時平均數法就是把各個時期的歷史數據按近期和遠期影響程度進行加權,求出平均值,作為下期預測值。
3、簡單移動平均法適用於近期期預測。當產品需求既不快速增長也不快速下降,且不存在季節性因素時,移動平均法能有效地消除預測中的隨機波動。
4、加權移動平均法即將簡單移動平均數進行加權計算。在確定權數時,近期觀察值的權數應該大些,遠期觀察值的權數應該小些。
5、指數平滑法即根用於中短期經濟發展趨勢預測,所有預測方法中,指數平滑是用得最多的一種。
6、季節趨勢預測法根據經濟事物每年重復出現的周期性季節變動指數,預測其季節性變動趨勢。
7、市場壽命周期預測法,適用於對耐用消費品的預測。這種方法簡單、直觀、易於掌握。
(10)序列分析方法擴展閱讀:
時間序列預測法的特徵
1、時間序列分析法是根據過去的變化趨勢預測未來的發展,前提是假定事物的過去延續到未來。運用過去的歷史數據,通過統計分析,進一步推測未來的發展趨勢。不會發生突然的跳躍變化,是以相對小的步伐前進;過去和當前的現象,可能表明現在和將來活動的發展變化趨向。
2.時間序列數據變動存在著規律性與不規律性
時間序列中的每個觀察值大小,是影響變化的各種不同因素在同一時刻發生作用的綜合結果。從這些影響因素發生作用的大小和方向變化的時間特性來看,這些因素造成的時間序列數據的變動分為四種類型:趨勢性、周期性、隨機性、綜合性。