老闆經常要銷售數據,每次都要重新做分析,太恐怖啦!後來換了一個數據分析工具,第一次做好分析之後,以後數據結果會自動定時更新哦(當然我連接了資料庫數據、表單數據),整理了常見銷售數據跟你分享。
1、銷售外勤管理
作為一個小領導,每天都要看下屬的客戶拜訪情況,團隊的成員會在協同軟體上詳細記錄自己的拜訪的情況,包括客戶名稱、行業和具體情況 ,由我來做匯總工作。
4)地區分布:通過提供BDP個人版的數據地圖,你能直觀看到銷售額的全國分布情況,還可鑽取到各省的各個城市,一步一步分析問題,找到對應負責人,不斷優化銷售策略。
這些數據都是銷售最經常關注的數據,做好圖表後直接通過BDP的「分享」功能將數據結果分享給Boss,數據變動,分享的結果也會變動,這樣分析效率大大提高了呢,老闆也特別喜歡。
註:以上數據圖表皆來自BDP個人版!
Ⅱ 銷售數據分析方法
4. DM數據分析
1.促銷彈性:單品業績成長指標,可用於分析品項選擇
2.毛利增減額:單品毛利成長指標,原因(售價不當、進價不低、業績不足)
3.業績、毛利達成率:可用於分析預估准確度、促銷效果
4.促銷佔比:可用於分析促銷強度及佔比合理性
Ⅲ 網店經營數據分析方法有哪幾種
(1)對比思想。
數據對比主要是參考橫向和縱向兩個角度
Ⅳ 數據分析方法論有哪些
1、PEST分析法PEST,也就是政治(Politics)、經濟(Economy)、社會(Society)、技術(Technology),能從各個方面把握宏觀環境的現狀及變化趨勢,主要用戶行業分析。
宏觀環境又稱一般環境,是指影響一切行業和企業的各種宏觀力量。
對宏觀環境因素作分析時,由於不同行業和企業有其自身特點和經營需要,分析的具體內容會有差異,但一般都應對政治、經濟、技術、社會,這四大類影響企業的主要外部環境因素進行分析。
政治環境:政治體制、經濟體制、財政政策、稅收政策、產業政策、投資政策等。
社會環境:人口規模、性別比例、年齡結構、生活力式、購買習慣、城市特點等。
技術環境:折舊和報廢速度、技術更新速度、技術傳播速度、技術商品化速度等。
經濟環境:GDP 及增長率、進出口總額及增長率、利率、匯率、通貨膨脹率、消費價格指數、居民可支配收入、失業率、勞動生產率等。
2、5W2H分析法
5W2H,即為什麼(Why)、什麼事(What)、誰(Who)、什麼時候(When)、什麼地方(Where)、如何做(How)、什麼價格(How much),主要用於用戶行為分析、業務問題專題分析、營銷活動等。
該分析方法又稱為七何分析法,是一個非常簡單、方便又實用的工具,以用戶購買行為為例:
Why:用戶為什麼要買?產品的吸引點在哪裡?
What:產品提供的功能是什麼?
Who:用戶群體是什麼?這個群體的特點是什麼?
When:購買頻次是多少?
Where:產品在哪裡最受歡迎?在哪裡賣出去?
How:用戶怎麼購買?購買方式什麼?
How much:用戶購買的成本是多少?時間成本是多少?
3、SWOT分析法
SWOT分析法也叫態勢分析法,S (strengths)是優勢、W (weaknesses)是劣勢,O (opportunities)是機會、T (threats)是威脅或風險。
SWOT分析法是用來確定企業自身的內部優勢、劣勢和外部的機會和威脅等,通過調查列舉出來,並依照矩陣形式排列,然後用系統分析的思想,把各種因素相互匹配起來加以分析。
運用這種方法,可以對研究對象所處的情景進行全面、系統、准確的研究,從而將公司的戰略與公司內部資源、外部環境有機地結合起來。
4、4P營銷理論
4P即產品(Proct)、價格(Price)、渠道(Place)、推廣(Promotion),在營銷領域,這種以市場為導向的營銷組合理論,被企業應用最普遍。
可以說企業的一切營銷動作都是在圍繞著4P理論進行,也就是將:產品、價格、渠道、推廣。通過將四者的結合、協調發展,從而提高企業的市場份額,達到最終獲利的目的。
產品:從市場營銷的角度來看,產品是指能夠提供給市場,被入們使用和消費並滿足人們某種需要的任何東西,包括有形產品、服務、人員、組織、觀念或它們的組合。
價格:是指顧客購買產品時的價格,包括基本價格、折扣價格、支付期限等。影響定價的主要因素有三個:需求、成本與競爭。
渠道:是指產品從生產企業流轉到用戶手上全過程中所經歷的各個環節。
促銷:是指企業通過銷售行為的改變來刺激用戶消費,以短期的行為(比如讓利、買一送一,營銷現場氣氛等等)促成消費的增長,吸引其他品牌的用戶或導致提前消費來促進銷售的增長。廣告、宣傳推廣、人員推銷、銷售促進是一個機構促銷組合的四大要素。
5、邏輯樹法
邏輯樹又稱問題樹、演繹樹或分解樹等。它是把一個已知問題當成“主幹”,然後開始考慮這個問題和哪些相關問題有關,也就是“分支”。邏輯樹能保證解決問題的過程的完整性,它能將工作細分為便於操作的任務,確定各部分的優先順序,明確地把責任落實到個人。
邏輯樹的使用必須遵循以下三個原則:
要素化:把相同的問題總結歸納成要素。
框架化:將各個要素組織成框架。遵守不重不漏的原則。
關聯化:框架內的各要素保持必要的相互關系,簡單而不獨立。
6、AARRR模型
AARRR模型是所有運營人員都要了解的一個數據模型,從整個用戶生命周期入手,包括獲取(Acquisition)、激活(Activition)、留存(Retention)、變現(Revenue)和傳播(Refer)。
每個環節分別對應生命周期的5個重要過程,即從獲取用戶,到提升活躍度,提升留存率,並獲取收入,直至最後形成病毒式傳播。
Ⅳ 數據分析的分析方法有哪些
數據分析的分析方法有:
1、列表法
將數據按一定規律用列表方式表達出來,是記錄和處理最常用的方法。表格的設計要求對應關系清楚,簡單明了,有利於發現相關量之間的相關關系;此外還要求在標題欄中註明各個量的名稱、符號、數量級和單位等:根據需要還可以列出除原始數據以外的計算欄目和統計欄目等。
2、作圖法
作圖法可以最醒目地表達各個物理量間的變化關系。從圖線上可以簡便求出實驗需要的某些結果,還可以把某些復雜的函數關系,通過一定的變換用圖形表示出來。
圖表和圖形的生成方式主要有兩種:手動製表和用程序自動生成,其中用程序製表是通過相應的軟體,例如SPSS、Excel、MATLAB等。將調查的數據輸入程序中,通過對這些軟體進行操作,得出最後結果,結果可以用圖表或者圖形的方式表現出來。
圖形和圖表可以直接反映出調研結果,這樣大大節省了設計師的時間,幫助設計者們更好地分析和預測市場所需要的產品,為進一步的設計做鋪墊。同時這些分析形式也運用在產品銷售統計中,這樣可以直觀地給出最近的產品銷售情況,並可以及時地分析和預測未來的市場銷售情況等。所以數據分析法在工業設計中運用非常廣泛,而且是極為重要的。
(5)經營數據分析方法擴展閱讀:
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。
數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。
Ⅵ 數據分析方法有哪些
常用方法:
利用數據挖掘進行數據分析常用的方法主要有分類、回歸分析、聚類、關聯規則、特徵、變化和偏差分析、Web頁挖掘等, 它們分別從不同的角度對數據進行挖掘。
一、分類:
1.分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。
2.它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。
②回歸分析:
1.回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。
2.它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。
③聚類:聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。
④關聯規則:
1.關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。
2.在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。
Ⅶ 數據分析方法有哪些
細分分析法
細分分析法是最常用的數據分析方法,對一個指標按不同的維度進行細分查看,往往就能找到影響數據指標漲幅的原因。