導航:首頁 > 研究方法 > IR研究方法

IR研究方法

發布時間:2024-12-21 07:05:14

❶ 教你掌握量化分析的專業工具——因子IC/IR

因子的IC 和IR這兩個概念在量化研究中至關重要,但往往難以清晰理解。本文將深入解析IC/IR的概念,助業余策略研究者無障礙閱讀量化研報,並提升研究水平。

首先,IC代表因子預測股票收益的能力。計算方法通過比較調倉周期期初與期末股票收益排名的線性相關度來得出。IC值越大,因子的選股能力越強。

其次,IR則是信息比率,代表因子獲取穩定Alpha的能力。IR由多個調倉周期的IC均值除以IC的標准方差得出。它兼顧了因子的選股能力(IC)和穩定性。

IC最大值為1,表示預測准確度為100%,即選擇的股票在下個調倉周期漲幅最大。相反,IC值為-1則表示選擇的股票在下個調倉周期跌幅最大。

實際應用中,反向指標同樣具有意義。當IC值的絕對值大於0.05時,因子具有較強選股能力;當IR大於0.5時,因子穩定獲取超額收益能力較強。

獲取IC/IR值的方法相對簡單。在果仁網策略研究界面,選擇選股條件並切換至「排名分析」選項卡,設定分析時間和調倉周期,點擊「開始分析」即可。

以「EP因子」(市盈率倒數)為例,通過設定後,可獲得IC/IR計算結果。結果主要關注因子的IC均值及IR均值,反映其預測能力和穩定性。

結果解讀中,IC均值和IR均值代表了因子在過去整個時間段的有效性和穩定性。如「EP因子」IC均值為0.069,IR均值為0.342,說明其選股能力相對不錯,但穩定性一般。

使用計算周期為20個交易日,IC均值是對因子過去有效性進行的衡量。如需查看每個周期的IC值,果仁網提供了歷史IC值展示,有助於更細致地分析因子預測准確性和波動情況。

IC值計算時,注意復合因子的分析,如EP和BP組合,形成復合因子計算得到的IC值不同。同時,當篩選條件過於嚴格導致股票數量過少時,IC分析可能缺乏統計意義。日線級別量化策略的主要收益來源於選股,因此研究策略應先對因子進行IC/IR分析。

多個因子間的互動效應復雜,單因子表現不佳不代表整體模型收益不佳。策略研究者應有創新思路,嘗試不同組合,而非僅依據單因子表現構建模型。

更多數據及量化研究咨詢可關注果仁網公眾號。

❷ IR的紅外光譜法(IR)

紅外光譜法又稱「紅外分光光度分析法」。簡稱「IR」,分子吸收光譜的一種。利用物質對紅外光區的電磁輻射的選擇性吸收來進行結構分析及對各種吸收紅外光的化合物的定性和定量分析的一法。被測物質的分子在紅外線照射下,只吸收與其分子振動、轉動頻率相一致的紅外光譜。對紅外光譜進行剖析,可對物質進行定性分析。化合物分子中存在著許多原子團,各原子團被激發後,都會產生特徵振動,其振動頻率也必然反映在紅外吸收光譜上。據此可鑒定化合物中各種原子團,也可進行定量分析。
1.紅外光譜法的一般特點
特徵性強、測定快速、不破壞試樣、試樣用量少、操作簡便、能分析各種狀態的試樣、分析靈敏度較低、定量分析誤差較大。
2.對樣品的要求
①試樣純度應大於98%,或者符合商業規格
這樣才便於與純化合物的標准光譜或商業光譜進行對照
多組份試樣應預先用分餾、萃取、重結晶或色譜法進行分離提純,否則各組份光譜互相重疊,難予解析
②試樣不應含水(結晶水或游離水)
水有紅外吸收,與羥基峰干擾,而且會侵蝕吸收池的鹽窗。所用試樣應當經過乾燥處理
③試樣濃度和厚度要適當
使最強吸收透光度在5~20%之間
3.定性分析和結構分析
紅外光譜具有鮮明的特徵性,其譜帶的數目、位置、形狀和強度都隨化合物不同而各不相同。因此,紅外光譜法是定性鑒定和結構分析的有力工具
①已知物的鑒定
將試樣的譜圖與標准品測得的譜圖相對照,或者與文獻上的標准譜圖(例如《葯品紅外光譜圖集》、Sadtler標准光譜、Sadtler商業光譜等)相對照,即可定性
使用文獻上的譜圖應當注意:試樣的物態、結晶形狀、溶劑、測定條件以及所用儀器類型均應與標准譜圖相同
②未知物的鑒定
未知物如果不是新化合物,標准光譜己有收載的,可有兩種方法來查對標准光譜:
A.利用標准光譜的譜帶索引,尋找標准光譜中與試樣光譜吸收帶相同的譜圖
B.進行光譜解析,判斷試樣可能的結構。然後由化學分類索引查找標准光譜對照核實
解析光譜之前的准備:
了解試樣的來源以估計其可能的范圍
測定試樣的物理常數如熔沸點、溶解度、折光率、旋光率等作為定性的旁證
根據元素分析及分子量的測定,求出分子式
計算化合物的不飽和度Ω,用以估計結構並驗證光譜解析結果的合理性解析光譜的程序一般為:
A.從特徵區的最強譜帶入手,推測未知物可能含有的基團,判斷不可能含有的基團
B.用指紋區的譜帶驗證,找出可能含有基團的相關峰,用一組相關峰來確認一個基團的存在
C.對於簡單化合物,確認幾個基團之後,便可初步確定分子結構
D.查對標准光譜核實
③新化合物的結構分析
紅外光譜主要提供官能團的結構信息,對於復雜化合物,尤其是新化合物,單靠紅外光譜不能解決問題,需要與紫外光譜、質譜和核磁共振等分析手段互相配合,進行綜合光譜解析,才能確定分子結構。
④鑒定細菌,研究細胞和其它活組織的結構
4.定量分析
紅外光譜有許多譜帶可供選擇,更有利於排除干擾。紅外光源發光能量較低,紅外檢測器的靈敏度也很低,ε<103
吸收池厚度小、單色器狹縫寬度大,測量誤差也較大
☆對於農葯組份、土壤表面水份、田間二氧化碳含量的測定和穀物油料作物及肉類食品中蛋白質、脂肪和水份含量的測定,紅外光譜法是較好的分析方法

❸ 多糖類的分析方法

下面將簡單介紹化學方法和物理分析方法。⑴化學方法測定多糖結構還是目前最常用的方法,測定的手段很多,其中經典而有效的是甲基化分析、高碘酸氧化和Smith降解、部分酸水解以及乙醯解和甲醇解等。① 乙醯解:多糖的乙醯解反應是在由乙酸酐、乙酸和硫酸組成的混合液中加熱進行的,在一定的糖苷鍵處裂解。研究表明,相同糖苷鍵在酸水解和乙醯解中的速度是不同的。乙醯解是酸水解的一種有用的補充,多糖可從這兩種不同的方法中獲得不同的片段,從不同的角度獲得多糖的結構信息。甲醇解:多糖在80-100℃條件下與無水甲醇氯化氫反應能將多糖變成組成單糖的甲基糖苷,這些甲基糖苷能轉化為三甲基硅醚衍生物或乙醯基衍生物,然後進行GC分析並與標准單糖對照,可得到組成多糖的各單糖的定量數據。⑵物理分析法 ①IR法:IR在多糖結構分析上主要是確定吡喃糖的苷鍵構型,以及常規觀察其他官能團。一般主要觀察730-960cm-1的范圍,如對於α-吡喃糖,δC1-H在 845 cm-1,而β-吡喃糖,δC1-H在890cm-1有最大吸收峰。②MS、GC-MS:GC分析多糖雖受樣品揮發性和熱穩定性的限制,但GC-MS是多糖結構分析不可缺少的工具,特別是對水解單糖、甲基化單糖及甲基化寡糖的分析,而且能鑒別出糖的異構體。MS在多糖結構分析中不僅在鑒別各種甲基衍生物的碎片,確定各種單糖殘基的連接位置時必不可少,而且由於FAB-MS、ESI-MS和 MALDI-MS等技術的出現,利用質譜還可以測定多糖的分子量及一級結構。③NMR:用NMR技術研究多糖結構的一個特點是不破壞樣品,對多糖的結構特徵可通過化學位移、偶合常數、積分面積、NOE及馳豫時間等參數來表達。一維、二維圖譜 NMR在分析糖的構型、相互連接的位置及順序等方面具有廣闊的應用前景。2、分子量及分子量分布多糖具有分子大小不均一的特點,近年來發現這些生物大分子的某一分子量范圍成分具有葯理活性,而另一分子量范圍的成分不具有葯理活性或具有一定的毒副作用,因此分子量及其分布既是這類葯物的有效性控制的指標又是安全性控制的指標,質量標准中制訂該項檢查十分必要,這也是近年來大分子聚合物葯物質量標准發展的一個明顯的特點。多糖分子量只是代表相似鏈長的平均配布,不同方法所測得的分子量不同,即使是同一多糖,其重均分子量與數均分子量也相差較大,通常採用凝膠色譜法控制這類葯物的分子量及其分布,應經研究選用與供試品分子大小相適應的色譜柱填充劑;使用的流動相通常為水或緩沖液,其pH值不應超過填充劑的耐受范圍,可加入適量的有機溶劑,但濃度不應超過30%,流速以 0.5-1.0ml/min為宜,因這類分子多無紫外吸收,一般採用示差折光檢測器,選用對照品的分子量范圍及顆粒形狀應與供試品匹配,測定數據經適宜的GPC軟體處理求得相關參數。3、含量測定一般來講,多糖不含蛋白和氨基酸,蛋白或氨基酸檢測應呈陰性或符合限度檢查要求,如為糖蛋白或糖肽,應提供其證據,以保證產品不是多糖與蛋白的混合物;並提供其氨基酸構成及蛋白含量范圍,以保證質量穩定可控。對從天然植物中得到的多糖,在結構研究中尤其對糖組成分析,確定其中是否含有糖醛酸殘基具有很重要的意義。糖醛酸的含量測定目前較常用的是硫酸咔唑法,但容易受中性糖殘基的干擾。為了消除測定的干擾,可先測定樣品中中性糖的吸收度,然後從樣品的吸收度減去中性糖的吸收度,即為樣品中糖醛酸的吸收度值。間羥基聯苯法也是一種常用的多糖中糖醛酸含量測定方法,該法較硫酸咔唑法受中性糖殘基的干擾更小。多糖的含量測定可分為兩大類:一類是直接測定多糖本身,如高效液相色譜法和酶法;另一類是利用組成多糖的單糖縮合反應而建立的方法,如苯酚-硫酸法、蒽酮-硫酸法等。前者需要多糖的純品和特定的酶,後者測定時方法學干擾較大,現有的比色重現性差,受影響因素多。但由於目前國內的實驗條件,多糖的含量仍然主要採用這種方法,其原理為:多糖在濃硫酸水合產生的高溫下迅速水解,產生單糖,單糖在強酸條件下與苯酚反應生成橙色衍生物。在波長490nm左右處和一定濃度范圍內,該衍生物的吸收值與單糖濃度呈線性關系,從而可用比色法測定其含量,所用的單糖對照品盡量採用與其多糖組成一致或為含量較高的單糖,這樣測得的值較准確。需要強調的是,這種方法所測定的是總糖的含量而不是總多糖的含量,因此首先應測定樣品中游離的單糖含量,然後將總糖的含量減去游離單糖的含量,即為總多糖的含量。另外還可以採用3,5-二硝基水楊酸比色法(DNS法),它是在鹼性條件下顯色,較准確測定還原糖與總糖的含量從而求出多糖的含量,可消除還原性雜質的干擾。

❹ 「IR」縮寫在MRI中的具體應用是什麼

在醫學領域中,"IR"這一縮寫常常代表"Inversion Recovery Imaging MRI",即反轉恢復成像MRI。這個術語在中文裡的表述是「反轉恢復成像」,其對應的拼音為"fan zhuǎn huī fù chéng xiàng",在醫學英文中的使用頻率約為242次,主要應用於British Medicine領域,特別是腦部MRI技術中。

更深入地理解,「IR」這個縮寫詞,其原意是通過一種技術在MRI中反轉磁場狀態,以觀察和診斷特定的組織特性。例如,它在研究液體衰減反轉恢復(FLAIR)和彌散加權成像(DWI)序列時,能有效評估腦部病變。在腦梗塞的診斷中,快速FLAIR序列MRI的應用就展示了其價值。

總的來說,"IR"作為"反轉恢復成像MRI"的縮寫,是一個在醫學診斷中不可或缺的工具,它的應用范圍廣泛且技術含量高。請注意,這些信息主要用於學習和學術交流,版權歸屬原始作者,僅為學習參考,使用者應自行判斷其適用性。

❺ 鑒定和研究礦物的其他主要方法簡介

鑒定和研究礦物的方法,隨工作目的和要求的不同而異(表16-1)。不同的方法各有其特點,它們對樣品的要求及所能解決的問題也各不相同。下面僅介紹某些重要方法的簡要特點。

1.成分分析方法

此類方法所得結果即為物質的化學成分數據。除經典化學分析系化學方法外,其他常用方法均屬物理方法,大多可同時分析多種元素,但一般不能區分變價元素的價態。

1)經典化學分析

此法准確度高,但靈敏度不很高,分析周期長,很不經濟。樣品要求是重量超過500mg的純度很高的單礦物粉末。

此法只適用於礦物的常量組分的定性和定量分析。主要用於新礦物種或亞種的詳細成分的確定和組成可變的礦物成分變化規律的研究。但不適用於稀土元素的分析。

表16-1 鑒定和研究礦物的主要方法一覽表

2)光譜分析

此法准確度較差(尤其是對含量大於3%的常量元素),但靈敏度高,且快速、經濟。可測元素達70多種。一次測試即能獲得全部主要元素及微量元素的信息。樣品要求:僅需數十毫克甚至數毫克的粉末樣品。

光譜分析通常用於礦物的微量和痕量元素的定性或半定量分析。特別是對於稀有分散元素也能獲得良好的效果。常作為化學分析的先導,以初步了解樣品中元素的種類和數量,供進一步分析或研究時參考。

3)原子吸收光譜分析

原子吸收光譜(AAS)分析靈敏度高,干擾少,快速、精確且較經濟。可測70多種元素,但一次只能分析一種元素,不宜於定性分析。樣品用量少,僅需數毫克粉末樣。

AAS主要用於10-6數量級微量元素和10-9數量級痕量元素的定量測定。適宜於測定沸點低、易原子化的金屬元素及部分半金屬元素。也可進行常量分析。但對稀土、Th、Zr、Hf、Nb、Ta、W、U、B等高溫元素的測定的靈敏度較低,對鹵族元素、P、S、O、N、C、H等尚不能測定或效果不佳。

4)X射線熒光光譜分析

X射線熒光光譜(XRF)分析准確度較高,成本低,速度快,可不破壞樣品。可分析元素的范圍為9F~92U。XRF要求數克至十克(一般4~5g,最少可至數十毫克)較純的粉末樣。液態樣品也可分析。

XRF用於常量元素和微量元素的定性或定量分析。尤其對稀土元素及稀有元素Nb、Ta、Zr、Hf等的定量分析有效。但不能測定變價元素的價態。

5)等離子體發射光譜分析

等離子體發射光譜(ICP)分析比光譜分析更為快速和靈敏,檢測下限可達(0.1×10-9)~(10×10-9)。精度較高,可達±3%,可測定除H、O、N和惰性氣體以外的所有元素。樣品要求:粉末,最少可以數毫克,也可以為液態樣品。

ICP適用於常量、微量和痕量元素的定性或定量分析。特別宜於分析包裹體中含量極低的重金屬離子。

6)激光顯微光譜分析

激光顯微光譜(LMES)分析靈敏度高,快速,有效,成本低,且被破壞樣品的面積小。可測70多種元素。樣品可以是光片、不加蓋玻璃的薄片或大小合適的手標本,樣品表面應拋光,切忌被污染;重砂、粉末或液體樣品要作某些處理。

LMES適於微粒、微量、微區的成分測定。用於研究礦物的化學成分及元素的賦存狀態,特別適用於微細疑難礦物的分析和鑒定。但是,目前對O、N、S等許多非金屬元素尚無法分析,對鹼金屬、難熔金屬(如Mo、Ta等)的檢測靈敏度較低。

7)質譜分析

質譜分析靈敏度和准確度均高,且分析速度快。以純度≥98%、粒徑<0.5mm的單礦物為樣品。樣量視礦物種不同而異,如硫化物需0.1~0.2g,硫酸鹽需2~5g。應避免用化學方法、浮選法等處理分離礦物,以防被污染。

質譜分析系10-6數量級定量分析,常用於准確測定各種岩石、礦物和有機物中元素的同位素組成。從10~30g的隕石標本中提取的稀有氣體即足以為分析所用。

8)中子活化分析

中子活化分析(NAA)靈敏度高,大多數元素的靈敏度達10-6~10-13g。准確度高,精度高(一般在±1%~±5%)。可測的元素達80多種。可同時測定多種元素,分析速度快,且不破壞樣品。樣品要求是純的單礦物粉末,樣量僅需數毫克至數十毫克。

NAA系超痕量、痕量、半微量甚至常量元素的定量分析。可直接測定濃度很低的貴金屬元素,對稀土元素的分析特別有效。廣泛用於同位素組成、同位素地質年齡的測定。此外,也常用於測定包裹體成分。適用於分析隕石和月岩樣品的組成。

9)電子探針分析

電子探針分析(EPMA)靈敏度高,檢測下限可達10-16g。精度一般可達1%~2%,但對微量元素的精度則可差於20%。解析度高(約7nm)。放大倍數為數十倍至數十萬倍。分析速度快,直觀,且不破壞樣品。可測元素的范圍大:波譜分析為4Be~92U,能譜分析為11Na~92U。樣品可以是光片、不加蓋玻璃的薄片或礦物顆粒,且表面必須清潔、平坦而光滑。

EPMA系微米數量級微區的成分分析,宜於常量元素的定量分析。既可定點作定性或定量分析,又能作線掃描和面掃描分析,以研究元素的種類、分布和含量,了解礦物成分分布的均勻程度和元素在礦物中的賦存狀態,定量測定礦物內部各環帶的成分。最適於微小礦物和包裹體成分的定性或定量分析,以及稀有元素、貴金屬元素的賦存狀態的研究。此外,還可輔以形貌觀察。EP-MA只能分析固態物質,對有機物質的分析有困難;不能分析元素的同位素、各種形式的水(如 H2 O和 OH-等)及其他揮發組分,無法區分 Fe2+和 Fe3+

2.結構分析方法

此類方法一般不破壞樣品,其分析結果是各種譜圖,用於研究物質的晶體結構、分子結構、原子中電子狀態的精細結構。有些還可藉以鑒定樣品的物相,如寶石學上目前常利用紅外吸收光譜、激光拉曼光譜、可見光吸收光譜等技術來鑒別天然寶石和合成寶石。

1)X射線分析

X射線分析是晶體結構研究和物相分析的最常用而有效的方法。其具體方法種類繁多,一般可歸為單晶法和粉晶法兩類。

(1)單晶法:通常稱為X射線結構分析,又有照相法和衍射儀法之分。目前主要採用四圓單晶衍射儀法,其特點是自動化程度高,快速,准確度高。單晶法要求嚴格挑選無包裹體、無雙晶、無連晶和無裂紋的單晶顆粒樣品,其大小一般在0.1~0.5mm。因此在應用上受到一定限制。單晶法主要用於確定晶體的空間群,測定晶胞參數、各原子或離子在單位晶胞內的坐標、鍵長和鍵角等;也可用於物相鑒定,繪制晶體結構圖。

(2)粉晶法:又稱粉末法,也有照相法和衍射儀法之分。粉晶法以結晶質粉末為樣品,可以是含少數幾種物相的混合樣品,粒徑一般在1~10μm。樣品用量少,且不破壞樣品。照相法只需樣品5~10mg,最少可至1mg左右;衍射儀法用樣量一般為200~500mg。粉晶衍射儀法簡便,快速,靈敏度高,分辨能力強,准確度高。根據計數器自動記錄的衍射圖(diffraction diagram),能很快查出面網間距d值和直接得出衍射強度,故目前已廣泛用於礦物或混合物之物相的定性或定量分析。粉晶法主要用於鑒別結晶質物質的物相,精確測定晶胞參數,尤其對鑒定粘土礦物及確定同質多象變體、多型、結構的有序—無序等特別有效。

2)紅外吸收光譜分析

紅外吸收光譜(IR)測譜迅速,數據可靠,特徵性強。傅里葉變換紅外光譜儀具有很高的解析度和靈敏度及很快的掃描速度。樣品不受物理狀態限制,可以是氣態、液態、結晶質、非晶質或有機化合物。乾燥固體樣品一般只需1~2mg,並研磨成2μm左右的樣品。

IR已廣泛應用於物質的分子結構和成分研究。適用於研究不同原子的極性鍵,可精確測定分子的鍵長、鍵角、偶極矩等參數;推斷礦物的結構,鑒定物相;對研究礦物中水的存在形式、絡陰離子團、類質同象混入物的細微變化、有序—無序及相變等十分有效。IR廣泛用於粘土礦物和沸石族礦物的鑒定,也可對混入物中各組分的含量作定量分析。

3)激光拉曼光譜分析

激光拉曼光譜(LRS)系無損分析,其測譜速度快,譜圖簡單,譜帶尖銳,便於解釋。幾乎在任何物理條件(高壓、高溫、低溫)下對任何材料均可測得其拉曼光譜。樣品可以是粉末或單晶(最好是5mm或更大者),不需特別制備,粉末所需量極少,僅0.5μg即可。也可以是液體樣品(10-6ml)。

LRS和IR同為研究物質分子結構的重要手段,兩者互為補充。LRS適用於研究同原子的非極性鍵的振動。

4)可見光吸收光譜分析

可見光吸收光譜分析簡便、可信,不需挑選單礦物,不破壞樣品。以0.03mm標准厚度的薄片為樣品,但研究多色性時則需用單晶體。

此法主要用於研究物質中過渡元素離子的電子構型、配位態、晶體場參數和色心等。也常用於顏色的定量研究,探討透明礦物的呈色機理。可適於研究細小(粒徑在1~5mm)的礦物顆粒。

5)穆斯堡爾譜分析

穆斯堡爾譜分析又稱核磁伽馬共振(NGR)。分析准確、靈敏、快速,解譜較為容易。目前僅可測40多種元素近90種同位素。所研究的元素可以是主成分,也可是含量為萬分之幾的雜質。樣品可以是晶質或者非晶質;既可是單晶,也可是礦物或岩石的粉末。但樣品中必須含有一定濃度的與放射源中γ射線的核相同的元素。含鐵礦物樣品中Fe原子濃度為5mg/cm2為宜,硅酸鹽樣品量一般為100mg左右,因樣品中Fe含量等因素而異。

NGR主要用於研究57Fe和119Sn元素離子的價態、配位態、自旋態、鍵性、磁性狀態、佔位情況及物質結構的有序—無序和相變等,也可用於物相鑒定和快速成分分析。對粘土礦物及隕石、月岩、海底沉積物等晶質多相混合物的研究很有效。

6)電子順磁共振分析

電子順磁共振(EPR)分析也稱電子自旋共振(ESR)分析。靈敏度高。不破壞樣品。只適於研究順磁性離子:室溫下能測定的主要有V4+、Cr3+、Mn2+、Fe3+、Ni2+、Cu2+、Eu2+、Gd3+等;而Ti3+、V3+、Fe2+、Co2+及多數稀土元素離子則只能在低溫下測定。EPR分析對樣品要求不高:固體、液體(0.1~0.01ml)、壓縮氣體或有機化合物均可;可以是單晶,也可以是粉末多晶混合物,但一般以單晶(粒徑在2~9mm)為好。樣品中順磁性離子的濃度不超過1%,以0.1%~0.001%為宜。樣品不需任何處理。

EPR主要用於研究過渡金屬離子(包括稀土元素離子)的微量雜質的價態、鍵性、電子結構、賦存狀態、配位態、佔位情況、類質同象置換及結構的電子—空穴心、結構的有序—無序、相變等。也可作微量元素的定性或定量分析及地質年齡的測定等。在寶石學上,常用於鑒別天然寶石與合成寶石及研究寶石的染色機制。

7)核磁共振分析

核磁共振(NMR)分析目前最常用的高分辨的核磁共振儀廣泛應用於某些分子結構的測定,其解析度高,靈敏度高,測量速度快。但可測元素的種類有限,主要有1H、7Li、9B、11B、13C、19F、23Na、27Al、29Si、31P、40Ca等。樣品可以是較濃的溶液(約0.5ml)、固體(一般20~80mg)或氣體。

NMR主要用於研究礦物中水的存在形式、質子的結構位置及離子的鍵性、配位態和有序—無序分布特徵等,研究相變和晶格缺陷。

3.其他測試方法

1)透射電子顯微鏡分析

透射電子顯微鏡(TEM)分析的功能主要是利用透射電子進行高分辨的圖象觀察,以研究樣品的形貌、晶格缺陷及超顯微結構(如超顯微雙晶和出溶片晶等)等特徵,同時用電子衍射花樣標定晶體的結構參數和晶體取向等。配有能譜儀(或波譜儀)者尚可進行微區常量元素的成分分析。TEM具有很高的解析度(達0.1nm左右)和放大倍數(為100倍~200萬倍),可以直接觀察到原子。樣品可以是光片、不加蓋玻璃的薄片或粉末樣,表面須平坦光滑。

2)掃描電子顯微鏡分析

掃描電子顯微鏡(SEM)分析的主要功能是利用二次電子進行高解析度的表面微形貌觀察。通常也輔以微區常量元素的點、線、面掃描定性和定量分析,查明元素的賦存狀態等。SEM的解析度高(達5nm左右),放大倍數為10倍~30萬倍。樣品可以是光片、不加蓋玻璃的薄片、粉末顆粒或手標本。其制樣簡單,圖象清晰,立體感強,特別適合粗糙表面的研究,如礦物的斷口、晶面的生長紋和階梯等觀察及顯微結構分析等。

3)微分干涉(相襯)顯微鏡分析

微分干涉(相襯)顯微鏡(DIC)能夠觀察礦物表面納米數量級的分子層厚度。反射型顯微鏡用於研究晶體表面微形貌,觀察晶體表面上的各種層生長紋和螺旋生長紋,從而探討晶體的生長機制;透射型顯微鏡用於研究岩石薄片中礦物的結晶狀態及內部顯微構造,能清晰看到微米數量級的微裂紋,從而有助於研究岩石受應力作用的方向和性質。微分干涉(相襯)顯微鏡的縱向解析度高,立體感強。其樣品可以是帶晶面的晶體顆粒或者薄片。

4)熱分析

熱分析系根據礦物在加熱過程中所發生的熱效應或重量變化等特徵來鑒定和研究礦物。廣泛採用的有差熱分析和熱重分析。

(1)差熱分析(DTA):是測定礦物在連續加熱過程中的吸熱(脫水、分解、晶格的破壞和類質同象轉變等)和放熱(氧化、結晶等)效應,以研究礦物的結構和成分變化。用於了解水的存在形式,研究物質的內部結構和結晶度,研究類質同象混入物及其含量,可進行物相的鑒定及其定量分析。尤其對粘土礦物、氫氧化物和其他含水礦物及碳酸鹽類等礦物的研究最為有效。DTA只適用於受熱後有明顯的物理、化學變化的物質,一般僅用於單相物質純樣的研究,樣量僅需100~200mg,粒度在0.1~0.25mm。DTA設備簡單,用樣量少,分析時間較短,但破壞樣品,且干擾因素多,混合樣品不能分離時會相互干擾。因此,必須與X射線分析、電子顯微鏡、化學分析等方法配合使用。

(2)熱重分析(TG):是測定礦物在加熱過程中質量的變化。熱重曲線的形式取決於水在礦物中的存在形式和在晶體結構中的存在位置。TG僅限於鑒定和研究含水礦物,並可確定其含水量。TG以純的礦物粉末為樣品,樣量一般需2~5g,且破壞樣品。TG常與DTA配合使用。目前正向微量(10-5g)分析發展。

閱讀全文

與IR研究方法相關的資料

熱點內容
振動頻譜分析兩種方法 瀏覽:777
研究生檔案調動方法 瀏覽:951
心臟缺氧的治療方法 瀏覽:47
鐵羅傘的功效與作用及食用方法 瀏覽:311
快速漲粉的正確方法 瀏覽:434
商場鍋爐計算方法 瀏覽:977
髖關節疼痛的治療最佳方法 瀏覽:914
折紙方法好玩又簡單的小視頻 瀏覽:760
半條命2手機版的通關方法 瀏覽:854
鉤針編織手機方法 瀏覽:924
換能器同心度檢測方法 瀏覽:800
h3cap經常不上線的解決方法 瀏覽:201
白醋泡手機殼的方法 瀏覽:22
帶結子線與開口八字環的連接方法 瀏覽:204
硬碟便簽安裝方法 瀏覽:271
炒黃芩功效與作用及食用方法 瀏覽:803
怎麼專注提高記憶力的方法 瀏覽:46
土壤有機污染物的檢測方法 瀏覽:104
家長怎樣評論老師教學方法 瀏覽:726
氣球鏈製作方法如何做高級感氣球 瀏覽:298