Ⅰ 什麼是定性分析和定量分析
定性分析是傳播學研究方法之一,指通過邏輯推理、哲學思辯、歷史求證、法規判斷等思維方式,著重從質的方面分析和研究某一事物的屬性。是傳統的人文科學研究方法在傳播學領域的具體運用。主要用於研究傳播的社會結構和功能、傳播的社會控制、傳播與社會發展的相互關系等。人類對社會和自然的認識首先是從屬性開始的,事物的根本差別也表現在其質的差別上,因此對事物進行質的分析是認識事物的重要方法。但是,在對事物進行定性分析時,往往容易受個人價值觀的影響。因此,應在定性分析基礎上輔以定量分析,以得出更准確、更客觀、更科學的結論。
定量分析是識別危險的一種方法。原是分析化學的一個分支,以測定物質中各成分的含量為主要目標。根據所用方法的不同,分為重量分析、容量分析和儀器分析三類。因分析試樣用量和被測成分的不同,又可分為常量分析、半微量分析、微量分析、超微量分析等。後推廣為在明確劃分物質種類的前提下,即把物質定性以後,具體分析物質的強度、剛度、范圍變化量指標。在「量」 的方面分析物質,適於分析危險損失發生的概率、頻率和損失程度等量度指標。
Ⅱ 定性分析與定量分析的異同及優缺點
定性和定量分析是兩種不相同但是有潛在聯系的分析方法。
不同:
定性就是用文字語言進行相關描述。它是主要憑分析者的直覺、經驗,運用主觀上的判斷來對分析對象的性質、特點、發展變化規律進行分析的一種方法。
定量就是用數學語言進行描述。它是依據統計數據,建立數學模型,並用數學模型針對數量特徵、數量關系與數量變化去分析的一種方法。
相同:
它們一般都是通過比較對照來分析問題和說明問題的。正是通過對各種指標的比較或不同時期同一指標的對照才反映出數量的多少、質量的優劣、效率的高低、消耗的大小、發展速度的快慢等等,才能為作鑒別、下判斷提供確鑿有據的信息。
優缺點:
相比而言,定量分析方法更加科學,但需要較高深的數學知識,而定性分析方法雖然較為粗糙,但在數據資料不夠充分或分析者數學基礎較為薄弱時比較適用。在分析過程中通常會運用定性與定量相結合的分析方法。
(定性分析與定量分析相結合的方法)
拓展資料
定性分析與定量分析的聯系:
定性分析與定量分析應該是統一的,相互補充的; 定性分析是定量分析的基本前提,沒有定性的定量是一種盲目的、毫無價值的定量;定量分析使之定性更加科學、准確,它可以促使定性分析得出廣泛而深入的結論 。
事實上,現代定性分析方法同樣要採用數學工具進行計算,而定量分析則必須建立在定性預測基礎上,二者相輔相成,定性是定量的依據,定量是定性的具體化,二者結合起來靈活運用才能取得最佳效果。
Ⅲ 地球化學的研究方法
地球化學的每種理論,應用於解決地學問題,均構成一種研究方法。地球化學的基本研究方法主要是對地球系統及其各級子系統進行觀察、取樣分析、歸納和演繹研究;其次是實驗模擬研究及數字模擬研究。現就地球化學一般研究方法簡述如下。
1.地球化學野外工作方法
這里涉及的主要是人們肉眼可以直接觀察的固體地球部分研究,至於大氣圈、海洋和地外天體等研究方法,以及隕石的收集和研究,有專門書籍論述,在此不再介紹。
地球化學野外工作的目的是:觀察了解宏觀地質體的物質類型、結構構造及它們在時間和空間上的相互關系,在此基礎上系統觀察和收集寓於各地質體中的地球化學記錄和信息,並採集具有明確代表對象和意義的樣品。當然,觀察收集信息及取樣的側重點應因研究目的不同而有所差別。
因為地球化學運動和作用寓於地質運動和作用之中,所以必須首先較好地了解研究區的地質背景,把握所研究地質作用的產物的特徵和礦物岩石組成、結構構造及它們之間的時空關系和序列。這些均屬於地質學的觀察研究內容,可按地質編錄或制圖法進行。這部分工作是地球化學研究的重要前提和必要基礎,是地球化學研究客觀性的根本保證。
在野外觀察建立了較好的地質研究的基礎上,必須重視各類地質體中地球化學記錄和信息的觀察和收集,力求在野外工作階段就能形成地球化學研究的構想或工作假設,從而保證室內研究能更有效地開展。常見一些年輕地球化學家研究中只有野外地質觀察而缺乏基本的野外地球化學信息收集,似乎認為地球化學研究對象僅限於化學元素和同位素微觀層次。地球及其層圈中的化學作用絕大多數都是通過化合物 (礦物)或物相之間的反應實現的,元素原子的相互作用只是這種反應的內在根據。化學、地學和地球化學今天的發展,已使地球化學從地質體的觀察中直接獲取地球化學信息成為可能。典型研究方法範例,見博伊爾 (R.W.Boyle)1979年出版的《金的地球化學及金礦床》。
如何進行野外地球化學觀察和信息收集? 通常地球化學可以廣泛應用礦物化學、岩石化學、化學及物理化學的知識和理論指導地質體的觀察。例如,根據地質體的岩石和礦物組成,不需化學分析就可知道它們的大致化學組成,基於礦物間受類質同象控制的元素分配規律,還可粗略推測它們中比較集中的微量元素種類和組合;石灰岩是強鹼弱酸的鹽類,其岩層可起著天然溶液酸鹼度調劑的作用,是影響元素遷移的鹼性障;觀察組成岩石的礦物共生組合及礦物的交代關系,可為應用相平衡理論研究地球化學作用奠定基礎。例如,在硫化物礦床氧化露頭中見到方鉛礦 (PbS)依次被鉛礬 (PbSO4 )和白鉛礦(PbCO3 )交代的現象,就可推斷硫化物礦石的氧化應依次經歷硫酸鹽和碳酸鹽階段,其環境應先是酸化、而後向鹼性過渡,從而提出進一步檢驗這種推斷的設想。此外,從物理化學觀點看來,天然溶液進入張性裂隙是外壓力的突然降低,岩石的糜棱岩化實質為物質顆粒變細增加表面能,從而增強化學反應速率,等等。通過地質地球化學野外觀察,收集到足夠的地球化學信息,再結合地質背景、條件與研究的目的,就可形成進一步研究的構想。
樣品採集必須注意的關鍵問題是,樣品應能確切地代表所要研究的地質對象,盡可能詳細地了解其產出的地質背景、環境和條件;符合所要研究的目的。例如,為了解原始岩石成分需採集新鮮的岩石樣品,為研究蝕變過程應按剖面採集原岩、半蝕變岩石到全蝕變岩石的系列樣品。樣品的規格和重量按需進行測試方法的要求確定;每種樣品採集的數量應以具有統計學上的一定代表性為准。
2.地球化學室內研究方法
地球化學室內研究包括樣品的加工、分選、預處理、岩石礦物鑒定和分析測試、數據處理,以及綜合分析得出結論的全過程。
在野外觀察和鑒別的基礎上,為了准確鑒定礦物、岩石、礦石的成分和類別,確定礦物-流體相間反應關系,常需進行偏光和反光顯微鏡觀察,對微粒和微區研究可以應用電子顯微鏡、X射線分析法、電子探針等儀器進行精確分析和鑒定。這方面需要特別強調的是,准確地鑒定礦物和岩石只是目的之一,而詳細觀察和了解岩石和礦石中礦物間的相平衡和反應-交代關系,以及礦物晶粒中的環帶結構和成分變化等,具有更深入層次的意義。現代高精度的實驗觀測技術為實時實地准確地觀測微細地球化學作用過程提供了條件。
為了獲取各類地質對象的化學成分,除主量元素可應用常規化學或儀器分析方法測定外,其餘大多數測定項目為微量組分,含量一般為克拉克值級次。對於這些微量元素的測定需要使用靈敏精確的分析技術,靈敏度一般要求達到 10-6~10-9。在這方面,現在常用的分析方法有:發射光譜分析、原子吸收光譜分析、火焰光譜分析、離子選擇電極法、中子活化分析、等離子體光量計分析、質譜分析,以及一些專項分析技術,如測汞、測金、放射性測量等。可以根據研究目的,選用適用的方法,在滿足靈敏度和精度要求的前提下,應考慮便捷、經濟的原則,避免過度追求高精度、過多測試項目等。
進行同位素定年和同位素組成測定的樣品,需根據樣品性質、估計的可能年代范圍,以及各種定年法和同位素測定分析法的特點和要求,選擇質譜分析的類型及進行樣品的制備和測定。
元素結合形式和賦存狀態是制約元素地球化學行為及活動性的重要因素。其中主量元素形成各自的礦物或獨立相,它們的結合形式根據礦物學的鑒定和研究確定。對不形成獨立礦物的元素的賦存形式以及細粒岩石 (頁岩、黏土沉積物、土壤等)中元素的賦存形式,則需應用專門的綜合測試方法解決,包括:晶體光學法、物性和物相分析法、X射線分析法、電子探針等微區分析法,以及化學偏提取法、電滲析法、放射性乳膠照相法等。
地球化學作用的物理化學條件的確定包括測定和計算兩類方法。如礦物流體包裹體測溫和測壓屬於測定法;礦物溫度計、微量元素溫度計、同位素溫度計等為測定和計算相結合的方法;而體系的pH、Eh、
在取得了上述各種實際資料和數據後,研究就進入了數據處理和資料整理,進而綜合提煉並得出科學結論的階段。數據處理和資料加工包括,按照研究的目的,應用地球化學多元統計分析的方法 (相關分析、判別分析、因子分析、聚類分析等)揭示研究對象數據和參數的分布形式、變異特徵、相關程度、元素共生組合及其影響因素等;根據解決問題的設想,編制各種圖件和表格等。此後,研究就進入了由客觀向主觀認識轉化上升的思維過程,在這方面,辯證唯物主義認識論和前述的地球化學方法論具有關鍵性的指導意義。
3.地球化學實驗模擬和數字模擬
開展實驗研究,尤其高溫高壓條件下的實驗研究,是地球化學探索必不可少的一種手段。實驗研究的內容主要包括:地球化學所需自然化合物 (礦物)和化學物種熱力學性質和參數的確定,元素在各種共存相間分配系數及同位素分餾系數的測定,極高溫度和壓力下礦物相變及超臨界水流體溶液物理化學性質的研究,以及各類地球化學作用實驗模擬的研究。這些實驗使地球化學應用物理化學原理和進行定量計算成為可能,為地球化學對深部地幔物質成分的判斷提供參考,使地球化學對各種自然和人為作用過程和機制的了解更加精確和深化。
在開展地球化學作用的實驗模擬時,應注意使實驗體系和條件盡可能地接近自然界的實際,這樣才能獲得有效和可信的結果。
各種地球化學體系的數字模型化研究 (如,岩漿作用過程中微量元素分配的定量模型),以及地殼、地幔、海洋等復雜體系的數字或計算機模擬,近年展現出不斷增多的趨勢被稱為計算地球化學。計算地球化學既是地球化學向定量化發展的必然結果,同時也是對許多難以進行實驗模擬的復雜自然體系定量研究的一種補充。
地球化學體系和作用過程的定量化數字模擬或建模,現在已廣泛應用於解決地球化學問題,其中包括地球化學體系的質量收支平衡、反應的化學平衡、系統動力學、物質輸運過程,以及上地幔、洋盆和岩漿房的化學演化等。地球化學數字模擬和建模的專著,如Francis Albarède 撰寫的 Introction to Geochemical Modeling (1995),Bethke 所著的Geochemical Reaction Modeling (1996 )和 Geochemical and Biogeochemical Reaction Modeling (2008)。我們必須高度重視這一發展趨勢。