Ⅰ 做初二數學證明題有什麼技巧
1、綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題解決。
2、分析法(執果索因),從命題的結論考慮,推敲使其成立需要具備的條件,然後再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止。
3、分析綜合法:將分析與綜合法合並使用,比較起來,分析法利於思考,綜合法易於表達,因此,在實際思考問題時,可合並使用,靈活處理,以利於縮短題設與結論的距離,最後達到證明目的。
(1)證明分析方法擴展閱讀:
幾何證明作為平面幾何中的一個重要問題,它有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。
掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善於將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。
Ⅱ 有結果推導出原因是什麼證明方法
你說的證明方法叫分析法。一般的證明方法有三種:
1. 綜合法是由原因推導到結果的證明方法,它是利用已知條件和某些數學定義、公理、定理等,經過一系列的推理論證,最後推導出所要證明的結論成立的證明方法。
2. 分析法是從要證明的結論出發,逐步尋求推證過程中,使每一步結論成立的充分條件,直到最後,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定義、公理、定理等)為止的證明方法。
3.假設原命題的結論不成立,經過正確的推理,最後得出矛盾,由此說明假設錯誤,從而證明了原命題成立,這樣的方法叫反證法;它是一種間接的證明方法.用這種方法證明一個命題的一般步驟:(1) 假設命題的結論不成立; (2) 根據假設進行推理,直到推理中導出矛盾為止 (3) 斷言假設不成立(4) 肯定原命題的結論成立 .
Ⅲ 幾何證明題分析的方法有幾種
幾何證明題分析的方法一般有分析法與綜合法兩種。
分析法:從已知入手,逐步推向結論。
綜合法:從結論出發,逐步推向已知。