Ⅰ 數據分析師常用的數據分析思路
01 細分分析
細分分析是數據分析的基礎,單一維度下的指標數據信息價值很低。
細分分析法可以大致分為兩類,一類是逐步分析,如:來北京市的訪客可分為朝陽和海淀等區;另一類是維度交叉,如:來自付費SEM的新訪客。
02 對比分析
對比分析主要是把兩個有關聯的數據指標進行相互比較,從數量上說明和展現研究對象的規模大小,水平的高低,速度快慢等方面的相對值,然後通過在一樣的維度下的指標數據對比,可以發現,找出業務在不同階段的問題。
03 漏斗分析
轉化漏斗分析是數據分析師進行業務分析的基本模型,我們最經常見的就是把最終的轉化設置為某種目的的實現,最典型的就是完成交易。但也可以是其他任何目的的實現,比如一次使用app的時間超過10分鍾。
04 同期群分析
同期群(cohort)分析在數據分析運營領域相當重要,尤其是互聯網運營,特別需要仔細觀察留存的情況。通過對性質完全一樣的可對比群體的留存情況的比較,來分析哪些因素影響用戶的留存。
05 聚類分析
聚類分析具有簡單,直觀的特徵,網站分析中的聚類主要分為:用戶,頁面或內容,來源。
用戶聚類主要體現為用戶分群,用戶標簽法;頁面聚類則主要是相似,相關頁面分組法;來源聚類主要包括渠道,關鍵詞等。
06 AB測試
增長黑客的一個主要思想之一,是千萬不要做一個大又全的東西,相反是需要不斷做出能夠快速驗證的小而精的東西。快速驗證,那如何驗證呢?主要方法就是AB測試。
07 埋點分析
只有採集了足夠的基礎數據,才能通過各種分析方法得到需要的分析結果。
通過分析用戶行為,並細分為:瀏覽行為,輕度交互,重度交互,交易行為,對於瀏覽行為和輕度交互行為的點擊按鈕等事件,因其使用頻繁,數據簡單,採用無埋點技術實現自助埋點,即可以提高數據分析的實效性,需要的數據可立即提取,又大量減少技術人員的工作量,需要採集更豐富信息的行為。
08 來源分析
流量紅利消失,我們對獲客來源的重視度極高,如何有效的標注用戶來源,至關重要。
傳統分析工具,渠道分析僅有單一維度,要深入分析不同渠道不同階段效果,SEM付費搜索等來源渠道和用戶所在地區進行交叉分析,得出不同區域的獲客詳細信息,維度越細,分析結果也越有價值。
09 用戶分析
眾所周知,用戶分析是互聯網運營的核心環節,通常用到的分析方法有:活躍分析,留存分析,用戶分群,用戶畫像,用戶細查等。可將用戶活躍細分為瀏覽活躍,互動活躍,交易活躍等,通過活躍行為的細分,掌握關鍵行為指標。
10 表單分析
表單分析中的填寫表單,這個環節是每個平台與用戶交互的必有環節,一份完美的表單設計,對客戶轉化率的提升有至關重要的作用。
用戶進入表單頁面,這時候就已經產生了微漏斗,從進入的總共的人數到最後完成,並且成功提交表單人數,這個過程之中,有多少人開始填寫表單,填寫表單時,遇到了什麼困難導致無法完成表單,都影響最終的轉化效果。
有關數據分析師常用的數據分析思路的內容,青藤小編就和您分享到這里了。如果您對互聯網大數據有著濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於大數據、數據分析師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
Ⅱ 數據分析思路都有哪些
1、趨勢分析最簡單、最常見的數據分析方法,一般用於核心指標的長期跟蹤,比如點擊率、GMV、活躍用戶數。可以看出數據有那些趨勢上的變化,有沒有周期性,有沒有拐點等,繼而分析原因。
2、多維分解
也就是通過不同的維度對於數據進行分解,以獲取更加精細的數據洞察。舉個例子,對網站維護進行數據分析,可以拆分出地區、訪問來源、設備、瀏覽器等等維度。
3、用戶分群
針對符合某種特定行為或背景信息的用戶,進行特定的優化和分析,將多維度和多指標作為分群條件,有針對性地優化供應鏈,提升供應鏈穩定性。
4、漏斗分析
按照已知的轉化路徑,藉助漏斗模型分析總體和每一步的轉化情況。例如將漏斗圖用於網站關鍵路徑的轉化率分析,不僅能顯示用戶的最終轉化率,同時還可以展示每一節點的轉化率。
5、留存分析
留存分析是一種用來分析用戶參與情況/活躍程度的分析模型,考察進行初始行為的用戶中,有多少人會進行後續行為。衡量留存的常見指標有次日留存率、7日留存率、30日留存率等。
6、A/B 測試
A/B測試是為了達到一個目標,採取了兩套方案,通過實驗觀察兩組方案的數據效果,判斷兩組方案的好壞,需要選擇合理的分組樣本、監測數據指標、事後數據分析和不同方案評估。
7、對比分析
分為橫向對比(跟自己比)和縱向對比(跟別人比),常見的對比應用有A/B test,A/B test的關鍵就是保證兩組中只有一個單一變數,其他條件保持一致。
8、交叉分析
交叉分析法就是將對比分析從多個維度進行交叉展現,進行多角度的結合分析,從中發現最為相關的維度來探索數據變化的原因。