❶ 新手怎麼學習數據分析
第一方面是數學基礎,第二方面是統計學基礎,第三方面是計算機基礎。要想在數據分析的道路上走得更遠,一定要注重數學和統計學的學習。數據分析說到底就是尋找數據背後的規律,而尋找規律就需要具備演算法的設計能力,所以數學和統計學對於數據分析是非常重要的。
而想要快速成為數據分析師,則可以從計算機知識開始學起,具體點就是從數據分析工具開始學起,然後在學習工具使用過程中,輔助演算法以及行業致死的學習。學習數據分析工具往往從Excel工具開始學起,Excel是目前職場人比較常用的數據分析工具,通常在面對10萬條以內的結構化數據時,Excel還是能夠勝任的。對於大部分職場人來說,掌握Excel的數據分析功能能夠應付大部分常見的數據分析場景。
在掌握Excel之後,接下來就應該進一步學習資料庫的相關知識了,可以從關系型資料庫開始學起,重點在於Sql語言。掌握資料庫之後,數據分析能力會有一個較大幅度的提升,能夠分析的數據量也會有明顯的提升。如果採用資料庫和BI工具進行結合,那麼數據分析的結果會更加豐富,同時也會有一個比較直觀的呈現界面。
數據分析的最後一步就需要學習編程語言了,目前學習Python語言是個不錯的選擇,Python語言在大數據分析領域有比較廣泛的使用,而且Python語言自身比較簡單易學,即使沒有編程基礎的人也能夠學得會。通過Python來採用機器學習的方式實現數據分析是當前比較流行的數據分析方式。
❷ 零基礎學習數據分析要做哪些准備
1.統計學相關知識統計學是數據分析的基礎,因為數據分析需要對大量數據進行統計分析,大家可以通過對統計學的學習,培養數據分析最基本的一些邏輯思維。
2. EXCEL
不要小看EXCEL,它可是最初級的數據分析工具,在處理的數據量不是很大時,EXCEL完全可以勝任。而且大家都有一定基礎,平時工作中也經常用,學習起來應該很容易,重點應該加強對於各類函數以及EXCEL數據可視化的學習。
3.代碼語言的了解
數據分析需要使用的工具很多,例如python、SQL等,這些都需要強大的代碼知識做支撐,所以有想學習數據分析的小夥伴可以在學習之前初步對代碼有一個了解,這樣不至於真正學習起來手足無措。
關於零基礎學習數據分析要做哪些准備,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❸ 零基礎如何系統學習數據分析
【導讀】隨著大數據,人工智慧的普及,數據分析也是越來越吃香了,市場人才需求量很大,吸引理論很多初學者和跨行的零基礎小白,那麼零基礎如何系統學習數據分析?一起來看看吧!
什麼是初學者?——如果解析學和數據科學對你來說是全新的領域,你也不知該行業的發展模式,而你又想在這個行業大展拳腳一番,那麼初學者就是你。以下這些應該在你的計劃之內。
1. R語言也好,Python語言也好,學習一門新的編程語言
我曾見到有同學同時學習R語言和Python語言,最後落得兩手空空。這種做法是很致命的。你一定要沉下心來專攻一門。鑒於這兩種語言都是開放源代碼工具,所以在公司里都有廣泛運用。Python被公認為最簡單的編程語言,而R語言一直都是最受青睞的統計工具。學習哪一門的決定權在你,因為兩個同等出色。
推薦課程:推薦R語言和Python入門課程《Python入門:數據挖掘實戰》、《R語言入門》
2. 學習統計學和數學
統計學的內容全都是關於假設和數列,然而沒有統計學和數學的知識你很難深入到數據行業里,這是數據科學家的重中之重。
3.一次性完成一門網路開放課程(最難執行)
大規模網路開放課程可以免費獲取和學習,可這對你來說也是最難實現的諾言。很多學生通常一次性注冊選修很多課程,結果一門也沒有圓滿完成。所以,你一定要一次專注一門課,完成之後再選下一門。
推薦課程:推薦R語言和python進階課程:《R語言實戰》、《Python進階:數據挖掘演算法》
4.了解業界動態,善於探索和發現
你要了解業內動態。我們生活在一個變化的世界,一夜之間事物就可能發生重大變化,今日和流行的技術明日就很可能面臨淘汰。你一定要多與一些富有經驗的專業人士、業內專家交流,預見未來的自己。
以上就是小編今天給大家整理發布的關於「零基礎如何系統學習數據分析?」的相關內容,希望對大家有所幫助。
❹ 數據分析入門的知識有哪些
說實話數據分析並不容易,但是一項技能的學習都是從零開始的,所以首先帶你了解數據分析所需要掌握的知識:
數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。
而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。
分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。
編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。
當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。
對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。
邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。
數據可視化
數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。
對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。
協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。
對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。
通過以上介紹,問題答案就顯而易見了,數據分析入門簡單,但是深入學習就沒有那麼容易了。