『壹』 matlab怎麼用小波包進行圖像去噪
小波圖像去噪的方法大概分為3類
1:基於小波變換摸極大值原理
2:基於小波變換系數的相關性
3:基於小波閾值的去噪。
基於小波閾值的去噪方法3個步驟:
1: 計算含雜訊圖像的小波變換。選擇合適的小波基和小波分解層數J,運用Matlab 分解演算法將含有雜訊圖像進行J層小波分解,得到相應的小波分解系數。
2:對分解後的高頻系數進行閾值量化,對於從1 到J的每一層,選擇一個適當的閾值和合適的閾值函數,將分解得到的高頻系數進行閾值量化,得到估計小波系數。
3:進行小波逆變化,根據圖像小波分解後的第J層,低頻 系數(尺度系數)和經過閾值量化處理的各層高頻系數(小波系數),運用Matlab重構演算法進行小波重構,得到去噪後的圖像。
『貳』 小波變換的閾值函數圖像去噪原理
一般情況下,這個閾值函數的選取與雜訊的方差是緊密相關的。
通常情況下,現在論文中的雜訊都是選用高斯白雜訊。
被雜訊污染的信號=干凈的信號+雜訊,
由於信號在空間上(或者時間域)是有一定連續性的,因此在小波域,有效信號所產生的小波系數其模值往往較大;而高斯白雜訊在空間上(或者時間域)是沒有連續性的,因此雜訊經過小波變換,在小波閾仍然表現為很強的隨機性,通常仍認為是高斯白噪的。
那麼就得到這樣一個結論:在小波域,有效信號對應的系數很大,而雜訊對應的系數很小。
剛剛已經說了,雜訊在小波域對應的系數仍滿足高斯白噪分布。如果在小波域,雜訊的小波系數對應的方差為sigma,那麼根據高斯分布的特性,絕大部分(99.99%)雜訊系數都位於[-3*sigma,3*sigma]區間內。因此,只要將區間[-3*sigma,3*sigma]內的系數置零(這就是常用的硬閾值函數的作用),就能最大程度抑制雜訊的,同時只是稍微損傷有效信號。將經過閾值處理後的小波系數重構,就可以得到去噪後的信號。
常用的軟閾值函數,是為了解決硬閾值函數「一刀切」導致的影響(模小於3*sigma的小波系數全部切除,大於3*sigma全部保留,勢必會在小波域產生突變,導致去噪後結果產生局部的抖動,類似於傅立葉變換中頻域的階躍會在時域產生拖尾)。軟閾值函數將模小於3*sigma的小波系數全部置零,而將模大於3*sigma的做一個比較特殊的處理,大於3*sigma的小波系數統一減去3*sigma,小於-3*sigma的小波系數統一加3*sigma。經過軟閾值函數的作用,小波系數在小波域就比較光滑了,因此用軟閾值去噪得到的圖象看起來很平滑,類似於冬天通過窗戶看外面一樣,像有層霧罩在圖像上似的。
比較硬閾值函數去噪和軟閾值函數去噪:硬閾值函數去噪所得到的峰值信噪比(PSNR)較高,但是有局部抖動的現象;軟閾值函數去噪所得到的PSNR不如硬閾值函數去噪,但是結果看起來很平滑,原因就是軟閾值函數對小波系數進行了較大的 「社會主義改造」,小波系數改變很大。因此各種各樣的閾值函數就出現了,其目的我認為就是要使大的系數保留,小的系數被剔出,而且在小波域系數過渡要平滑。
還有的什麼基於隱馬爾科夫模型去噪,高斯混合尺度去噪(英文縮寫好像是GSR,不好意思,記不大清楚了)和自適應閾值去噪等,也就是利用有效信號的小波系數和雜訊的小波系數在小波域的分布特徵不同等特徵來進行有效信號的小波系數和雜訊的小波系數在小波域的分離,然後重構得到去噪後的信號。
說了這么多,忘了關鍵的一點,如何估計小波域雜訊方差sigma的估計,這個很簡單:把信號做小波變換,在每一個子帶利用robust estimator估計就可以(可能高頻帶和低頻帶的方差不同)。
robust estimator就是將子帶內的小波系數模按大小排列,然後取最中間那個,然後把最中間這個除以0.6745就得到雜訊在某個子帶內的方差sigma。利用這個sigma,然後選種閾值函數,就可以去去噪了~~
『叄』 用小波分析法除去音頻信號的雜訊
小波變換及其應用是八十年代後期發展起來的應用數學分支,被稱為「Fourier分析方法的突破性進展[1]」。 1986年Meyer Y構造了一個真正的小波基,十多年間小波分析及其應用得到了迅速發展,原則上傳統的傅里葉分析可用小波分析方法取代[2],它能對幾乎所有的常見函數空間給出通過小波展開系數的簡單刻劃,也能用小波展開系數描述函數的局部光滑性質,特別是在信號分析中,由於它的局部分析性能優越,因而在數據壓縮與邊緣檢測等方面它比現有的手段更為有效[3-8]。 小波變換在圖像壓縮中的應用因它的高壓縮比和好的恢復圖像質量而引起了廣泛的注意,且出現了各種基於小波變換的圖像壓縮方案。
小波變換自1992年Bos M等[9]首先應用於流動注射信號的處理,至今雖才8年時間,但由於小波變換其優良的分析特性而迅速滲透至分析化學信號處理的各個領域。本文介紹了小波變換的基本原理及其在分析化學中的應用情況。
1 基本原理
設f(t)為色譜信號,其小波變換在L2(R)中可表示為:
其中a, b∈R,a≠0,參數a稱為尺度因子b為時移因子,而(Wf)(b, a)稱為小波變換系數,y(t)為基本小波。在實際分析化學信號檢測中其時間是有限長度,f(t)通常以離散數據來表達,所以要採用Mallat離散演算法進行數值計算,可用下式表示:
fj+1=θj + f j
其中:N為分解起始尺度;M為分解次數;fj和qj可由下式求得:
此處:Φj, m為尺度函數;Ψj, m 為小波函數;系數Cmj ,dmj可由下式表達:
hk-2m , gk-2m取決於小波母函數的選取。
用圖表示小波分解過程如下:
圖中fN 、fN-1....fN-m和θN-1、θN-2....θN-m分別稱為在尺度N上的低頻分量和高頻分量。上述分解過程的逆過程即是信號的重構過程。
2 分析化學中的應用
根據小波變換基本原理及其優良的多分辯分析特性,本文將小波變換在分析化學信號處理中的應用劃歸為以下三個方面:
2.1 信號的濾波
小波濾波方法目前在分析化學中應用主要是小波平滑和小波去噪兩種方法。小波平滑是將某一信號先經小波分解,將在時間域上的單一信號分解為一系列不同尺度上的小波系數(也稱不同頻率上的信號), 然後選定某一截斷尺度,使高於此尺度的小波系數全部為零,再重構信號,這樣就完成了一個低通小波濾波器的設計;而小波去噪,則是在小波分解基礎上選定一閾值,對所有尺度空間的小波系數進行比較,使小於此閾值的小波系數為零,然後重構信號[10]。
邵利民[11]等首次將小波變換應用於高效液相色譜信號的濾波,他們應用了Haar小波母函數,由三次小波分解後所得的低頻部分重構色譜信號,結果成功地去除了雜訊,明顯地提高了色譜信號的信噪比,而色譜峰位保持一致,此法提高了色譜的最低檢測量和色譜峰的計算精度。董雁適[12]等提出了基於色譜信號的小波自適應濾波演算法,使濾波與雜訊的頻帶分布,強度及信噪在頻帶上的交迭程度基本無關,具有較強的魯棒性。
在光譜信號濾噪中的應用,主要為紅外光譜和紫外光譜信號濾噪方面的應用,如Bjorn K A[13]等將小波變換用於紅外光譜信號的去噪,運用6種不同的小波濾噪方法(SURE,VISU,HYBRID,MINMAX,MAD和WP)對加噪後紅外光譜圖進行了去噪,針對加噪與不加噪的譜圖,對Fourier變換、移動平均濾波與小波濾波方法作了性能比較研究,結果認為Fourier變換、移動平均濾波等標准濾波方法在信噪比很低時濾噪性能與小波濾波方法差不多,但對於高信噪比的信號用小波濾噪方法(特別是HYBRID和VISU)則更有效 。閔順耕[14]等對近紅外漫反射光譜進行了小波變換濾波。顧文良[15]等對示波計時電信號進行了濾噪處理。王立世[16]等對電泳信號也做了小波平滑和去噪,都取得了滿意的效果。鄒小勇[17]等利用小波的時頻特性去除了階躍伏安信號中的噪音,並提出了樣條小波多重濾波分析方法,即將過濾後的高頻噪音信號當成原始信號進行濾波處理,使之對有用信號進行補償。鮑倫軍等[18]將樣條小波和傅里葉變換聯用技術應用於高噪音信號的處理。另外,程翼宇[19]等將紫外光譜信號的濾噪和主成分回歸法進行了有機的結合,提出了小波基主成分回歸(PCRW)方法,改善了主成分回歸演算法。
2.1 信號小波壓縮
信號經小波分解之後,噪音信號會在高頻部分出現,而對於有用的信號分量大部分在低頻部分出現,據此可以將高頻部分小波系數中低於某一閾值的系數去除,而對其餘系數重新編碼,只保留編碼後的小波系數,這樣可大大減少數據貯存量,達到信號壓縮的目的。
在近代分析化學中分析儀器的自動化水平在不斷提高,分析儀器所提供的數據量越來越大。尋找一種不丟失有效信息的數據壓縮方法,節省數據的貯存量,或降低與分析化學信息處理有關的一些演算法的處理量,已成為人們關心的問題。Chau F T等[20]用快速小波變換對模擬和實驗所得的紫外可見光譜數據進行了壓縮,討論了不同階數的Daubechies小波基、不同的分解次數及不同的閾值對壓縮結果的影響。Barclay V J和Bonner R F[10]對實驗光譜數據作了壓縮,壓縮率可達1/2~1/10,並指出在數據平滑和濾噪的同時,也能進行數據的壓縮是小波有別與其他濾波方法的一大特點。王洪等[21]用Daubechies二階正交小波基對聚乙烯紅外光譜進行了成功的壓縮,數據可壓縮至原來的1/5以下。邵學廣等[22]對一維核磁共振譜數據作了小波變換壓縮,分別對常用的Haar、Daubechies以及Symmlet小波基作了比較,其結果表明准對稱的Symmlet小波基對數據的復原效果最佳,而且在壓縮到64倍時,均方差仍然較小。章文軍等[23]提出了常用小波變換數據壓縮的三種方法,將緊支集小波和正交三次B-樣條小波壓縮4-苯乙基鄰苯二甲酸酐的紅外光譜數據進行了對比,計算表明正交三次B-樣條小波變換方法效果較好,而在全部保留模糊信號及只保留銳化信號中數值較大的系數時,壓縮比大而重建光譜數據與原始光譜數據間的均方差較小。邵學廣等[24]將小波數據壓縮與窗口因子分析相結合,在很大程度上克服了用窗口因子分析直接處理原始信號時人工尋找最佳窗口的困難,在壓縮比高達8:1的情況下,原始信號中的有用信息幾乎沒有丟失,窗口因子分析的解析時間大為縮短。Bos M等[25]用Daubechies小波對紅外光譜數據進行壓縮,壓縮後的數據作為人工神經網路演算法的輸入接點,從而提高了人工神經網路的訓練速度,預測的效果也比直接用光譜數據訓練的要好。
2.3 小波多尺度分析
在多尺度分析方面的應用主要是對化學電信號進行小波分解,使原來單一的時域信號分解為系列不同頻率尺度下的信號,然後對這些信號進行分析研究。
小波在色譜信號處理方面的應用,主要是對重疊色譜峰的解析。邵學廣[26-27]等對苯、甲苯、乙苯三元體系色譜重疊峰信號小波變換後的某些頻率段進行放大,然後重構色譜信號,使重疊色譜峰得到了分離,定量分析結果得到了良好的線性關系。此後邵學廣[28]等利用了譜峰提取法對植物激素重疊色譜峰作了定量計算,此法表明,利用小波變換從重疊色譜信號中提取的各組分的峰高與濃度之間仍然具有良好的線性關系。
重疊伏安峰的分辨是電分析化學中一個長期存在的難題。當溶液中存在兩種或更多的電活性物質,而這些物質的氧化(或還原)電位又很靠近時,就會不可避免地出現重疊峰的現象,而給進一步的定性、定量分析帶來了很大困難。因此,人們做了較多的工作去解決這一難題。數學方法是目前處理重疊峰的重要手段,如Fourier變換去卷積以及曲線擬合。曲線擬合通常用來獲得「定量」的信息,但這種方法有較多的人為因素,重疊峰包含的峰的個數,相對強度都是靠假設得來,因而可能引入嚴重的誤差;去卷積方法則是一種頻域分析手段,但該方法需先找出一個函數來描述伏安峰,然後再根據這個函數來確定去卷積函數,因此,去卷積函數的確定是比較麻煩的,尤其是對不可逆電極過程,無法找到一個合適的函數表達式,而且該方法還需經正、反Fourier變換,比較繁瑣費時, 而小波分析的出現成了電分析化學家關注的熱點。
陳潔等[29]用DOG小波函數處理差分脈沖實驗數據,通過選擇合適的伸縮因子,成功地延長了用DPV法測定Cu2+的線性范圍。鄭建斌等[30-31]將小波變換用於示波計時電位信號的處理,在有用信息提取、重疊峰分辨等方面進行了系統的研究。王洪等[32]將小波邊緣檢測的思想用於電位滴定終點的確定,找到了一種判斷終點准確的終點判斷方法。鄭小萍等[33]將樣條小波變換技術用於分辨重疊的伏安峰,以選定的分辨因子作用於樣條小波濾波器,構造了一個小波峰分辨器,用它來直接處理重疊的伏安峰,取得了較好的分離效果,被處理重疊峰可達到完全基線分離,且峰位置和峰面積的相對誤差均較小。
對於紅外光譜圖,目前也是通過對紅外譜圖進行小波分解,以提高紅外譜圖的分辯率。陳潔[34]等對輻射合成的丙烯醯胺、丙烯酸鈉共聚物水凝膠的紅外光譜信號經小波處理後,使其特徵吸收帶較好地得到分離,成功地提高了紅外光譜圖的解析度。謝啟桃[35]等對不同晶型聚丙烯紅外光譜圖作了小波變換,也得到了可用以區分聚丙烯a、b兩晶型的紅外光譜圖。
3 展望
小波變換由於其優良的局部分析能力,使其在分析化學信號的濾噪、數據壓縮和譜峰的分離方面得到了很好的應用。本人通過對小波變換在化學中應用的探索,認為對於分析化學中各種電信號的平滑、濾波還有待作更深入的研究,以設計出更為合理有效的小波濾波器,以消除由於平滑而導至的尖銳信號的峰高及峰面積的變化或由於去噪而帶來的尖銳信號附近的不應有的小峰的出現;對於重疊峰的分離及其定量計算,還應該探討如色譜峰基線的確定方法以及待分離頻率段的倍乘系數的確定方法;另外對於色譜峰的保留指數定性問題,由於不同化合物在某一確定的分析條件下有可能會出現保留值相同的情況,這將使在未知樣中加標準的峰高疊加法定性或外部標准物對照定性變得困難,我們是否可能對色譜峰進行小波分解,然後在不同的尺度上對其進行考察,以尋求色譜峰的小波定性方法,這可能是個可以進一步研究的問題。
小波變換將在分析化學領域得到更加廣泛的應用,特別對於分析化學中的多元定量分析法,如多元線性回歸法(MLR),主成分回歸法(PCR),偏最小二乘法(PLS)等方法及人工神經網路(ANN)將會同小波變換進行有機的結合,以消除各種雜訊干擾對定量分析的影響;或對相關數據進行壓縮以減少待分析數據的冗餘,提高分析精度和大大減少計算量提高分析速度。小波變換將會成為分析化學中定量和定性分析的一種非常重要的工具。
『肆』 什麼是小波圖像處理技術
波分析是目前國際上最新的時頻分析工具,在信號處理方面有著廣泛地應用,本文著重討論基於小波變換的圖像處理技術。
基於小波變換的圖像去噪是圖像去噪的主要方法之一。通過對基於小波變換的圖像去噪技術進行分析,總結了基於單小波圖像去噪的基本方法和每種方法的優缺點以及改進方向在分析多小波和小波標架變換的基礎上,提出了基於多小波變換的圖像去噪演算法和基於小波標架變換的圖像去噪演算法實驗證明,新演算法具有良好的去噪效果。
圖像融合是將同一場景中多幅圖像的互補信息合並成一幅新圖像,以便更好地對場景進行觀察和理解多小波能夠為圖像提供一種比單小波更加精確的分析方法在研究多小波變換特性的基礎上,提出了基於離散多小波變換的圖像融合方法。實驗證明,該方法具有很好的融合效果。
隨著多媒體技術的發展,數字水印技術已成為數字版權保護領域研究的一個研究熱點在分析數字水印技術的原理特點系統結構以及關鍵技術的基礎上,提出基於提升格式小波變換的數字水印演算法,該演算法在對彩色圖像進行水印處理方面達到較好的效果,健壯性良好。
圖像壓縮是多媒體的關鍵技術之一,尋求性能良好的壓縮方法是一個重要的研究領域通過對多小波基設誅預濾波器構造以及多小..........
『伍』 圖像去噪的國內外研究現狀
當前國內、外的研究動態
從對圖像進行濾波的過程中所採用的濾波方法來分,可分為空間域濾波、變換域濾波;從濾波類型來分,又可以分為線性濾波和非線性濾波。
2002年Do.M.N和VetterliM.提出了一種「真正」的二維圖像稀疏表達方法——Contourlet變換[7,8],這種變換能夠很好的表徵圖像的各向異性特徵。由於Contourlet變換能更好的捕獲圖像的邊緣信息,因此選擇合適的閾值進行去噪就能獲得比小波變換更好的效果。Starck等人將Curvelet變換應用於圖像的去噪過程中並取得了良好的效果[9],該方法雖然能有效的去除雜訊,但往往會「過扼殺」Curvelet系數,導致在消除雜訊的同時丟失圖像細節。在過去的二十年裡,自適應濾波器在通信和信號處理領域引起了人們的極大關注。TerenceWang等人針對二維自適應FIR濾波器提出了一種二維最優塊隨機梯度演算法(TDOBSG)[10]。這種演算法對濾波器的所有系數使用了空間可變的收縮因子。基於使後驗估計方差矢量的二范數最小的最小方差准則,在塊迭代的過程中選出最優的收斂因子。
線性濾波器的最大優點是演算法比較簡單且速度比較快,缺點是容易造成細節和邊緣模糊。在目前對非線性濾波器的研究中,中值濾波器有較明顯的優勢,很多科學工作者對中值濾波器作了改進或者提出了一些新型的中值濾波器。Loupas等人提出的自適應的加權中值濾波方法(AWMF),但他利用的Speckle雜訊模型不夠精確,圖像細節損失較大[11]。針對中值濾波器在處理矢量信號存在的缺點,Jakko等人提出兩種矢量中值濾波器[12]。
近年來,小波分析是當前應用數學中一個迅速發展的新領域,它憑借其卓越的優越性,越來越多的被應用於圖像去噪等領域,基於小波分析的圖像去噪技術也隨著小波理論的不斷完善取得了較好的效果。上個世紀八十年代Mallet提出了 MRA(Multi_Resolution Analysis),並首先把小波理論運用於信號和圖像的分解與重構,利用小波變換模極大值原理進行信號的奇異性檢測,提出了交替投影演算法用於信號重構,為小波變換用於圖像處理奠定了基礎[13]。後來,人們根據信號與雜訊在小波變換下模極大值在各尺度上的不同傳播特性,提出了基於模極大值去噪的基本思想。1992年,Donoho和Johnstone[14]提出了「小波收縮」,它較傳統的去噪方法效率更高。「小波收縮」被Donoho和Johnstone證明是在極小化極大風險中最優的去噪方法,但在這種方法中最重要的就是確定閾值。1995年,Stanford大學的學者D.L.Donoho和I.M.Johnstone提出了通過對小波系數進行非線性閾值處理來降低信號中的雜訊[15,16,17]。從這之後的小波去噪方法也就轉移到從閾值函數的選擇或最優小波基的選擇出發來提高去噪的效果。影響比較大的方法有以下這么幾種:EeroP.Semoncelli和EdwardH.Adelson提出的基於最大後驗概率的貝葉斯估計准則確定小波閾值的方法[18];ElwoodT.Olsen等在處理斷層圖像時提出了三種基於小波相位的去噪方法:邊緣跟蹤法、局部相位方差閾值法以及尺度相位變動閾值法[19];學者Kozaitis結合小波變換和高階統計量的特點提出了基於高階統計量的小波閾值去噪方法[20];G.P.Nason等利用原圖像和小波變換域中圖像的相關性用GCV(generalcross-validation)法對圖像進行去噪[21];Hang.X和Woolsey等人提出結合維納濾波器和小波閾值的方法對信號進行去噪處理[22],VasilyStrela等人將一類新的特性良好的小波(約束對)應用於圖像去噪的方法[23];同時,在19世紀60年代發展的隱馬爾科夫模型(HiddenMarkov Model)[24],是通過對小波系數建立模型以得到不同的系數處理方法;後又有人提出了雙變數模型方法[25,26],它是利用觀察相鄰尺度間父系數與子系數的統計聯合分布來選擇一種與之匹配的二維概率密度函數。這些方法均取得了較好的效果,對小波去噪的理論和應用奠定了一定的基礎。
另外,盡管小波去噪方法現在已經成為去噪和圖像恢復的重要分支和主要研究方向,但目前在另類雜訊分布(非高斯分布)下的去噪研究還不夠。目前國際上開始將注意力投向這一領域,其中非高斯雜訊的分布模型、高斯假設下的小波去噪方法在非高斯雜訊下如何進行相應的拓展,是主要的研究方向。未來這一領域的成果將大大豐富小波去噪的內容。
總之,由於小波具有低墒性、多解析度、去相關性、選基靈活性等特點[27],小波理論在去噪領域受到了許多學者的重視,並獲得了良好的效果。但如何採取一定的技術消除圖像雜訊的同時保留圖像細節仍是圖像預處理中的重要課題。目前,基於小波分析的圖像去噪技術已成為圖像去噪的一個重要方法。
『陸』 小波圖像去噪的原理是什麼啊
圖像降噪的主要目的是在能夠有效地降低圖像雜訊的同時盡可能地保證圖像細節信息不受損失,。圖像去噪有根據圖像的特點、雜訊統計特性和頻率分布規律有多種方法,但它們的基本原理都是利用圖像的雜訊和信號在頻域的分布不同,即圖像信號主要集中在低頻部分而雜訊信號主要分布在高頻部分,採取不同的去噪方法。傳統的去噪方法,在去除雜訊的同時也會損害到信號信息,模糊了圖像。
小波變換主要是利用其特有的多解析度性、去相關性和選基靈活性特點,使得它在圖像去噪方面大有可為,清晰了圖像。經過小波變換後,在不同的解析度下呈現出不同規律,設定閾值門限,調整小波系數,就可以達到小波去噪的目的。
小波變換去噪的基本思路可以概括為:利用小波變換把含噪信號分解到多尺度中,小波變換多採用二進型,然後在每一尺度下把屬於雜訊的小波系數去除,保留並增強屬於信號的小波系數,最後重構出小波消噪後的信號。其中關鍵是用什麼准則來去除屬於雜訊的小波系數,增強屬於信號的部分。