Ⅰ 鐢╦ava鍐欎漢鑴歌瘑鍒綆楁硶鏈夊摢浜涳紵
Java涓甯歌佺殑浜鴻劯璇嗗埆綆楁硶鏈夛細
Eigenface: 榪欐槸涓縐嶅熀浜庝富鎴愬垎鍒嗘瀽鐨勪漢鑴歌瘑鍒綆楁硶錛屽畠灝嗕漢鑴稿浘鍍忔槧灝勫埌涓涓浣庣淮鐨勭壒寰佺┖闂淬
Fisherface: 榪欐槸涓縐嶅熀浜庢姇褰辯殑浜鴻劯璇嗗埆綆楁硶錛屽畠鍒╃敤綰挎у垽鍒鍒嗘瀽鎶鏈瀵逛漢鑴稿浘鍍忚繘琛屽垎綾匯
Local Binary Patterns (LBP): 榪欐槸涓縐嶅熀浜庝簩榪涘埗鍍忕礌鐐規瘮杈冪殑浜鴻劯璇嗗埆綆楁硶錛屽畠鎻愬彇浜嗗浘鍍忎腑鐨勭汗鐞嗙壒寰併
Haar-like鐗瑰緛錛 榪欐槸涓縐嶅熀浜庣Н鍒嗗浘鍍忕殑浜鴻劯璇嗗埆綆楁硶錛屽畠媯嫻嬪浘鍍忎腑鐨勮竟緙樼壒寰併
Convolutional Neural Networks (CNNs): 榪欐槸涓縐嶅熀浜庡嵎縐紲炵粡緗戠粶鐨勪漢鑴歌瘑鍒綆楁硶錛屽畠妯℃嫙浜嗕漢綾誨ぇ鑴戜腑鐨勮嗚夎瘑鍒榪囩▼銆
榪欎簺綆楁硶閮芥槸騫挎硾鐢ㄤ簬浜鴻劯璇嗗埆搴旂敤涓鐨勶紝鏍規嵁鍏蜂綋闇奼傚拰搴旂敤鐜澧冮夋嫨鍚堥傜殑綆楁硶鏄寰堥噸瑕佺殑銆
Ⅱ eigenface 怎樣進行人臉識別
整理了一下,步驟如下:
特徵臉EigenFace從思想上其實挺簡單。就相當於把人臉從像素空間變換到另一個空間,在另一個空間中做相似性的計算。
EigenFace選擇的空間變換方法是PCA,也就是大名鼎鼎的主成分分析。它廣泛的被用於預處理中以消去樣本特徵維度之間的相關性。
EigenFace方法利用PCA得到人臉分布的主要成分,具體實現是對訓練集中所有人臉圖像的協方差矩陣進行本徵值分解,得對對應的本徵向量,這些本徵向量(特徵向量)就是「特徵臉」。每個特徵向量或者特徵臉相當於捕捉或者描述人臉之間的一種變化或者特性。這就意味著每個人臉都可以表示為這些特徵臉的線性組合。
演算法說明白了都是不明白的,所以還是得去看具體實現及具體結構代碼:
Ⅲ opencv的人臉識別基於什麼特徵
基於幾何特徵的人臉識別方法
基於特徵的方法是一種自下而上的人臉檢測方法,由於人眼可以將人臉在不此研究人員認為有一個潛在的假設:人臉或人臉的部件可能具有在各種條件下都不會改變的特徵或屬性,如形狀、膚色、紋理、邊緣信息等。基於特徵的方法的目標就是尋找上述這些不變特徵,並利用這些特徵來定位入臉。這類方法在特定的環境下非常有效且檢測速度較高,對人臉姿態、表情、旋轉都不敏感。但是由於人臉部件的提取通常都藉助於邊緣運算元,因此,這類方法對圖像質量要求較高,對光照和背景等有較高的要求,因為光照、噪音、陰影都極有可能破壞人臉部件的邊緣,從而影響演算法的有效性。
模板匹配演算法首先需要人TN作標准模板(固定模板)或將模板先行參數化(可變模板),然後在檢測人臉時,計算輸入圖像與模板之間的相關值,這個相關值通常都是獨立計算臉部輪廓、眼睛、鼻子和嘴各自的匹配程度後得出的綜合描述,最後再根據相關值和預先設定的閾值來確定圖像中是否存在人臉。基於可變模板的人臉檢測演算法比固定模板演算法檢測效果要好很多,但是它仍不能有效地處理人臉尺度、姿態和形狀等方面的變化。
基於外觀形狀的方法並不對輸入圖像進行復雜的預處理,也不需要人工的對人臉特徵進行分析或是抽取模板,而是通過使用特定的方法(如主成分分析方法(PCA)、支持向量機(SVM)、神經網路方法(ANN)等)對大量的人臉和非人臉樣本組成的訓練集(一般為了保證訓練得到的檢測器精度,非人臉樣本集的容量要為人臉樣本集的兩倍以上)進行學習,再將學習而成的模板或者說分類器用於人臉檢測。因此,這也是j種自下而上的方法。這種方法的優點是利用強大的機器學習演算法快速穩定地實現了很好的檢測結果,並且該方法在復雜背景下,多姿態的人臉圖像中也能得到有效的檢測結果。但是這種方法通常需要遍歷整個圖片才能得到檢測結果,並且在訓練過程中需要大量的人臉與非人臉樣本,以及較長的訓練時間。近幾年來,針對該方法的人臉檢測研究相對比較活躍。
基於代數特徵的人臉識別方法
在基於代數特徵的人臉識別中,每一幅人臉圖像被看成是以像素點灰度為元素的矩陣,用反映某些性質的數據特徵來表示人臉的特徵。 設人臉圖像 ) , ( y x I 為二維 N M × 灰度圖像,同樣可以看成是 N M n × = 維列向量,可視為 N M × 維空間中的一個點。但這樣的一個空間中,並不是空間中的每一部分都包含有價值的信息,故一般情況下,需要通過某種變換,將如此巨大的空間中的這些點映射到一個維數較低的空間中去。然後利用對圖像投影間的某種度量來確定圖像間的相似度,最常見的就是各種距離度量。 在基於代數特徵的人臉識別方法中,主成分分析法(PCA)和Fisher 線性判別分析(LDA)是研究最多的方法。本章簡要介紹介紹了PCA。
完整的PCA(PrincipalComponentAnalysis)人臉識別的應用包括四個步驟:人臉圖像預處理;讀入人臉庫,訓練形成特徵子空間;把訓練圖像和測試圖像投影的上一步驟中得到的子空間上;選擇一定的距離函數進行識別。詳細描述如下:
4.1讀入人臉庫
一歸一化人臉庫後,將庫中的每個人選擇一定數量的圖像構成訓練集,設歸一化後的圖像是n×n,按列相連就構成n2維矢量,可視為n2維空間中的一個點,可以通過K-L變換用一個低維子空間描述這個圖像。
4.2計算K.L變換的生成矩陣
訓練樣本集的總體散布矩陣為產生矩陣,即
或者寫成:
式中xi為第i個訓練樣本的圖像向量,|l為訓練樣本的均值向量,M為訓練樣本的總數。為了求n2×n2維矩陣∑的特徵值和正交歸一化的特徵向量,要直接計算的話,計算量太大,由此引入奇異值分解定理來解決維數過高的問題。
4.3利用奇異值分解(AVD)定理計算圖像的特徵值和特徵向量
設A是一個秩為r的行n×r維矩陣,則存在兩個正交矩陣和對角陣:
其中凡則這兩個正交矩陣和對角矩陣滿足下式:
其中為矩陣的非零特徵值,
4.4 把訓練圖像和測試圖像投影到特徵空間每一副人臉圖像向特徵臉子空間投影,得到一組坐標系數,就對應於子空間中的一個點。同樣,子空間中的任一點也對應於~副圖像。這組系數便可作為人臉識別的依據,也就是這張人臉圖像的特徵臉特徵。也就是說任何一幅人臉圖像都可以表示為這組特徵臉的線性組合,各個加權系數就是K.L變換的展開系數,可以作為圖像的識別特徵,表明了該圖像在子空間的位置,也就是向量
可用於人臉檢測,如果它大於某個閾值,可以認為f是人臉圖像,否則就認為不是。這樣原來的人臉圖象識別問題就轉化為依據子空間的訓練樣本點進行分類的問題。
基於連接機制的人臉識別方法
基於連接機制的識別方法的代表性有神經網路和彈性匹配法。
神經網路(ANN)在人工智慧領域近年來是一個研究熱門,基於神經網路技術來進行人臉特徵提取和特徵識別是一個積極的研究方向。神經網路通過大量簡單神經元互聯來構成復雜系統,在人臉識別中取得了較好的效果,特別是正面人臉圖像。常用的神經網路有:BP網路、卷積網路、徑向基函數網路、自組織網路以及模糊神經網路等n¨。BP網路的運算量較小耗時也短,它的自適應功能使系統的魯棒性增強。神經網路用於人臉識別,相比較其他方法,其可以獲得識別規則的隱性表達,缺點是訓練時間長、運算量大、收斂速度慢且容易陷入局部極小點等。Gutta等人結合RBF與樹型分類器的混合分類器模型來進行人臉識別乜螂1。Lin等人採用虛擬樣本進行強化和反強化學習,採用模塊化的網路結構網路的學習加快,實現了基於概率決策的神經網路方法獲得了較理想結果,。此種方法能較好的應用於人臉檢測和識別的各步驟中。彈性匹配法採用屬性拓撲圖代表人臉,拓撲圖的每個頂點包含一個特徵向量,以此來記錄人臉在該頂點位置周圍的特徵信息¨引。拓撲圖的頂點是採用小波變換特徵,對光線、角度和尺寸都具有一定的適應性,且能適應表情和視角的變化,其在理論上改進了特徵臉演算法的一些缺點。
基於三維數據的人臉識別方法
一個完整的人臉識別系統包括人臉面部數據的獲取、數據分析處理和最終結果輸出三個部分。圖2-1 顯示了三維人臉識別的基本步驟:1 、通過三維數據採集設備獲得人臉面部的三維形狀信息;2 、對獲取的三維數據進行平滑去噪和提取面部區域等預處理;3 、從三維數據中提取人臉面部特徵,通過與人臉庫中的數據進行比對;4 、用分類器做分類判別,輸出最後決策結果。
基於三維數據的方法的代表性是基於模型合成的方法和基於曲率的方法。
基於模型合成的方法,它的基本思想為:輸入人臉圖像的二維的,用某種技術恢復(或部分恢復)人臉的三維信息,再重新合成指定條件下的人臉圖像。典型代表是3D可變形模型和基於形狀恢復的3D增強人臉識別演算法。3D可變形模型首先通過200個高精度的3D人臉模型構建一個可變形的3D人臉模型,用這個模型來對給定的人臉圖像擬合,獲得一組特定的參數,再合成任何姿態和光照的人臉圖像n卜捌。基於形狀恢復的3D增強人臉識別演算法是利用通用的3D人臉模型合成新的人臉圖像,合成過程改變了一定的姿態與光源情況。
曲率是最基本的表達曲面信息的局部特徵,因而最早用來處理3D人臉識別問題的是人臉曲面的曲率。Lee禾lJ用平均曲率和高斯曲率值,將人臉深度圖中凸的區域分割出來。
如果你是開發者的話,可以去Tel一下colorreco,更好地技術解答。