Ⅰ 什麼是公理方法和公理體系
公理是依據人類理性的不證自明的基本事實,經過人類長期反復實踐的考驗,不需要再加證明的基本命題。除了重言式之外,沒有任何事物可被推導,若沒有任何事物被假定的話。公理即是導出特定一套演繹知識的基本假設。
公理不證自明,而所有其他的斷言(若談論的是數學,則為定理)則都必須藉助這些基本假設才能被證明。
然而,對數學知識的解釋從古至今已不太一樣,且最終「公理」這一詞對今日的數學家眼中和在亞里斯多德和歐幾里得眼中的意思也有了些許的不同。
古希臘人認為幾何學也是數種科學的其中之一,且視幾何學的定理和科學事實有同等地位。他們發展並使用邏輯演繹方法來作為避免錯誤的方法,並以此來建構及傳遞知識。亞里斯多德的後分析篇是對此傳統觀點的一決定性的闡述。
(1)什麼是公理方法和公理體系擴展閱讀
公理化的實現就是:
①從其諸多概念中挑選出一組初始概念,該理論中的其餘概念,都由初始概念通過定義引入,稱為導出概念;
②從其一系列命題中挑選出一組公理,而其餘的命題,都應用邏輯規則從公理推演出來,稱為定理。應用邏輯規則從公理推演定理的過程稱為一個證明,每一定理都是經由證明而予以肯定的。
由初始概念、導出概念、公理以及定理構成的演繹體系,稱為公理系統。初始概念和公理是公理系統的出發點。
公理系統相應地區分為古典公理系統、現代公理系統或稱形式公理系統。最有代表性的古典公理系統是古希臘數學家歐幾里得在《幾何原本》一書中建立的。
第一個現代公理系統是D.希爾伯特於1899年提出的。他在《幾何基礎》一書中,不僅建立了歐幾里得幾何的形式公理系統,而且也解決了公理方法的一些邏輯理論問題。
例如歐幾里德《幾何原本》中就規定了五條公理和五條公設(以現代觀點來看,公設也是公理),平面幾何中的一切定理都可由這些公理和公設推導而得。