導航:首頁 > 研究方法 > 數概念的教學方法

數概念的教學方法

發布時間:2024-06-03 05:27:27

1. 小學數學概念的小學數學概念教學過程與方法

小學數學概念教學的過程
根據數學概念學習的心理過程及特徵,數學概念的教學一般也分為三個階段:①引入概念,使學生感知概念,形成表象;②通過分析、抽象和概括,使學生理解和明確概念;③通過例題、習題使學生鞏固和應用概念。
(一)數學概念的引入
數學概念的引入,是數學概念教學的第一個環節,也是十分重要的環節。概念引入得當,就可以緊緊地圍繞課題,充分地激發起學生的興趣和學習動機,為學生順利地掌握概念起到奠基作用。
引出新概念的過程,是揭示概念的發生和形成過程,而各個數學概念的發生形成過程又不盡相同,有的是現實模型的直接反映;有的是在已有概念的基礎上經過一次或多次抽象後得到的;有的是從數學理論發展的需要中產生的;有的是為解決實際問題的需要而產生的;有的是將思維對象理想化,經過推理而得;有的則是從理論上的存在性或從數學對象的結構中構造產生的。因此,教學中必須根據各種概念的產生背景,結合學生的具體情況,適當地選取不同的方式去引入概念。一般來說,數學概念的引入可以採用如下幾種方法。
1、以感性材料為基礎引入新概念。
用學生在日常生活中所接觸到的事物或教材中的實際問題以及模型、圖形、圖表等作為感性材料,引導學生通過觀察、分析、比較、歸納和概括去獲取概念。
例如,要學習「平行線」的概念,可以讓學生辨認一些熟悉的實例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然後分化出各例的屬性,從中找出共同的本質屬性。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個平面內、兩條邊可以無限延長、永不相交等。同樣可分析出門框和黑板上下邊的屬性。通過比較可以發現,它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內;彼此間距離處處相等;兩條直線沒有公共點等,最後抽象出本質屬性,得到平行線的定義。
以感性材料為基礎引入新概念,是用概念形成的方式去進行教學的,因此教學中應選擇那些能充分顯示被引入概念的特徵性質的事例,正確引導學生去進行觀察和分析,這樣才能使學生從事例中歸納和概括出共同的本質屬性,形成概念。
2、以新、舊概念之間的關系引入新概念。
如果新、舊概念之間存在某種關系,如相容關系、不相容關系等,那麼新概念的引入就可以充分地利用這種關系去進行。
例如,學習「乘法意義」時,可以從「加法意義」來引入。又如,學習「整除」概念時,可以從「除法」中的「除盡」來引入。又如,學習「質因數」可以從「因數」和「質數」這兩個概念引入。再如,在學習質數、合數概念時,可用約數概念引入:「請同學們寫出數1,2,6,7,8,12,11,15的所有約數。它們各有幾個約數?你能給出一個分類標准,把這些數進行分類嗎?你能找出多種分類方法嗎?你找出的所有分類方法中,哪一種分類方法是最新的分類方法?」
3、以「問題」的形式引入新概念。
以「問題」的形式引入新概念,這也是概念教學中常用的方法。一般來說,用「問題」引入概念的途徑有兩條:①從現實生活中的問題引入數學概念;②從數學問題或理論本身的發展需要引入概念。
例如,在學習「平均數」時,教師可以先向學生呈現一個「幼兒園小朋友爭拿糖果」的生活情境,讓學生思考,為什麼有的小朋友很高興,有的小朋友很不高興?應該怎樣做才能使大家都高興?接下來應該怎麼做?這個幼兒園的老師可能會怎麼做?
4、從概念的發生過程引入新概念。
數學中有些概念是用發生式定義的,在進行這類概念的教學時,可以採用演示活動的直觀教具或演示畫圖說明的方法去揭示事物的發生過程。例如,小數、分數等概念都可以這樣引入。這種方法生動直觀,體現了運動變化的觀點和思想,同時,引入的過程又自然地、無可辯駁地闡明了這一概念的客觀存在性。
(二)小學數學概念的形成 引入概念,僅是概念教學的第一步,要使學生獲得概念,還必須引導學生准確地理解概念,明確概念的內涵與外延,正確表述概念的本質屬性。為此,教學中可採用一些具有針對性的方法。
1、對比與類比。
對比概念,可以找出概念間的差異,類比概念,可以發現概念間的相同或相似之處。例如,學習「整除」概念時,可以與「除法」中的「除盡」概念進行對比,去比較發現兩者的不同點。用對比或類比講述新概念,一定要突出新、舊概念的差異,明確新概念的內涵,防止舊概念對學習新概念產生的負遷移作用的影響。
2、恰當運用反例。
概念教學中,除了從正面去揭示概念的內涵外,還應考慮運用適當的反例去突出概念的本質屬性,尤其是讓學生通過對比正例與反例的差異,對自己出現的錯誤進行反思,更利於強化學生對概念本質屬性的理解。
用反例去突出概念的本質屬性,實質是使學生明確概念的外延從而加深對概念內涵的理解。凡具有概念所反映的本質屬性的對象必屬於該概念的外延集,而反例的構造,就是讓學生找出不屬於概念外延集的對象,顯然,這是概念教學中的一種重要手段。但必須注意,所選的反例應當恰當,防止過難、過偏,造成學生的注意力分散,而達不到突出概念本質屬性的目的。
3、合理運用變式。
依靠感性材料理解概念,往往由於提供的感性材料具有片面性、局限性,或者感性材料的非本質屬性具有較明顯的突出特徵,容易形成干擾的信息,而削弱學生對概念本質屬性的正確理解。因此,在教學中應注意運用變式,從不同角度、不同方面去反映和刻畫概念的本質屬性。一般來說,變式包括圖形變式、式子變式和字母變式等。
例如,講授「等腰三角形」概念,教師除了用常見的圖形(圖6-1(1))展示外,還應採用變式圖形(圖6-1(2)、(3)、(4))去強化這一概念,因為利用等腰三角形的性質去解題時,所遇見的圖形往往是後面幾種情形。
(三)小學數學概念的鞏固
為了使學生牢固地掌握所學的概念,還必須有概念的鞏固和應用過程。教學中應注意如下幾個方面。
1、注意及時復習
概念的鞏固是在對概念的理解和應用中去完成和實現的,同時還必須及時復習,鞏固離不開必要的復習。復習的方式可以是對個別概念進行復述,也可以通過解決問題去復習概念,而更多地則是在概念體系中去復習概念。當概念教學到一定階段時,特別是在章節末復習、期末復習和畢業總復習時,要重視對所學概念的整理和系統化,從縱向和橫向找出各概念之間的關系,形成概念體系。
2、重視應用
在概念教學中,既要引導學生由具體到抽象,形成概念,又要讓學生由抽象到具體,運用概念,學生是否牢固地掌握了某個概念,不僅在於能否說出這個概念的名稱和背誦概念的定義,而且還在於能否正確靈活地應用,通過應用可以加深理解,增強記憶,提高數學的應用意識。
概念的應用可以從概念的內涵和外延兩方面進行。
(1)概念內涵的應用
①復述概念的定義或根據定義填空。
②根據定義判斷是非或改錯。
③根據定義推理。
④根據定義計算。
例4(1)什麼叫互質數?答:是互質數。
(2)判斷題:
27和20是互質數()
34與85是互質數()
有公約數1的兩個數是互質數()
兩個合數一定不是互質數()
(3)鈍角三角形的一個角是82o,另兩個角的度數是互質數,這兩個角可能是多少度?
(4)如果P是質數,那麼比P小的自然數都與P互質。這句話對嗎?請說明理由?
2.概念外延的應用
(1)舉例
(2)辨認肯定例證或否定例證。並說明理由。
(3)按指定的條件從概念的外延中選擇事例。
(4)將概念按不同標准分類。
例5(1)列舉你所見到過的圓柱形物體。
(2)下列圖形中的陰影部分,哪些是扇形?(圖6-2)
圖6—2
(3)分母是9的最簡真分數有_分子是9的假分數中,最小的一個是
(4)將自然數2-19按不同標准分成兩類(至少提出3種不同的分法)
概念的應用可分為簡單應用和綜合應用,在初步形成某一新概念後通過簡單應用可以促進對新概念的理解,綜合應用一般在學習了一系列概念後,把這些概念結合起來加以應用,這種練習可以培養學生綜合運用知識的能力。
(三)注意辨析
隨著學習的深入,學生掌握的概念不斷增多,有些概念的文字表述相同,有些概念內涵相近,使得學生容易產生混淆,如質數與互質數,整除與除盡,體積與容積等等。因此在概念的鞏固階段,要注意組織學生運用對比的方法,弄清易混淆概念的區別和聯系,以促使概念的精確分化。
例6關於面積和周長,可組織學生從下列幾個方面進行對見
(1)什麼叫做長方形的周長?什麼叫做長方形的面積?
(2)周長和面積常用的計量單位分別有哪些?
(3)在圖6—3中,A,B兩個圖形的周長相等嗎?面積相等嗎?
圖6—4
圖6—3
(4)圖6—4中的每一小方格代表一平方厘米,這個圖的面積是,周長是,剪一刀,然後將它拼成一個正方形,這個正方形的周長是,面積是。
數學概念是用詞或片語來表達的,但有些詞語受日常用語的影響,會給學生造成認識和理解上的錯覺和障礙。如幾何知識中的高」、「底」、「腰」等概念,從字面上容易使學生產生「鉛垂方向」與「下方」、「兩側」的錯覺。而「倒數」則強化了分子與分母顛倒位置的直觀認識,弱化了「兩個數的乘積等於1」的本質屬性,因此在教學時,要幫助學生分清一些詞的日常意義和專門的數學意義,正確地理解表示概念的詞語,從而准確地掌握概念。

2. 中學數學概念教學的基本方式有哪些

一、情境引導,發現本質 概念是對研究對象的本質屬性的概括.而本質屬性的概括的過程是一個由感性到理性、由特殊到一般的思維過程,要使學生獲得清晰的概念,就要在概念教學中充分開展這樣一個過程.按照初中生的年齡特徵,要盡量聯系學生的實際生活經驗引入概念,讓學生在不知不覺中對概念潛移默化,而不是照本宣科,死記詞句.例如,在教學平面內點的直角坐標的概念時,實質上是建立在平面內點和有序實數對的一一對應關系基礎之上.我們可以藉助於學生們看電影時找座位等一些學生所熟悉的實例來引入課題,讓學生在無意識狀態下進入新的概念學習當中,而不是就書認書,硬背概念.當然,要注意這樣做的本身並不是目的,它只是實現教學目標的一種手段,是為了用形象的實例來探討研究對象的抽象本質屬性,因而應把精力放在如何把感性認識上升到理性認識這一過程上來.另外,生活實例並不等於數學概念,有的包括非本質屬性,而有的遺漏了某些本質屬性,因此教者在舉例時必須切實,防止學生對概念的曲解,走向另一個極端. 此外,在概念的教學過程中,要在概念的系統中形成概念,而不是突如其來地灌給學生.從原有的概念基礎上引入,既要注意從學生已有的知識的基礎上引入新概念,又要充分揭示新知識與舊概念的矛盾,使學生認識到舊概念的局限性,學習新概念的必要性.這就要求我們教者在教學前要很好地分析新概念在概念系統中的位置.例如,算術根在教材中的位置,它的前面是方根,後面是根式.它是為了便於研究根式的性質和進行根式的運算,因為正數的平方根有兩個值,它們互為相反數.因此研究二次根式的性質只要研究算術平方根的性質就可以了.算術根是為了解決實數范圍內方根運算的可行和單值而出現的,從而為研究根式鋪平了道路,它在概念系統中起到了承上啟下的作用. 二、呈現定義,促進理解 概念的定義是我們所研究對象的本質屬性的概括,措辭更是精煉,每個字詞都有其重要的作用.為了深刻領會概念的含義,教師不僅要注意對概念論述時用詞的嚴密性和准確性,同時還要及時糾正某些不當及概念認識上的錯誤,這樣有利於培養學生嚴密的邏輯思維習慣,逐步養成對定義的深入鑽研,逐字逐句加以分析,認真推敲的良好習慣. 例如,在講解等腰三角形概念時,一定要強調概念中的有兩條邊相等的「有」字,而不是只有兩條邊相等的「只有」二字.前面的有兩條邊相等包括了兩種情況:一是只有兩條邊相等的等腰三角形,即腰與底不相等的等腰三角形;二是三條邊相等的等腰三角形又叫等邊三角形,而後面的僅僅涉及到一種情況,排除了等邊三角形也是等腰三角形的這一特殊情況.又如,「a、b、c不全等於零」和「a、b、c全不等於零」,這兩條定義字詞都一樣,只是位置不同,但意義截然不同.再如,不在同一直線上的三點確定一個圓,若改寫成三點確定一個圓,得出一個新命題,它既包括了三點在同一直線上也包括了三點不在同一直線上的兩種情形,而在同一直線上的三點不可能確定一個圓,即圓上任意三點都不在同一直線上.故將不在同一直線上三點確定一個圓寫成三點確定一個圓是不成立的.因此,在講述此概念時應突出「不在同一直線上」這句話. 三、新舊聯系,正反對照 有些概念單純地講學生難以接受,難以掌握.但是把某些相關或相對的概念放在一起進行類比、對照,使學生既了解它們之間的聯系又注意到它們的區別,會使學生茅塞頓開,另闢蹊徑.兩個概念之間的關系,可分為相容和不相容兩種,相容又可分為同一、交叉和從屬三種關系.例如,正整數和自然數是同一關系,平方根和算術平方根是從屬關系,方根和根式是交叉關系,矩形和菱形是交叉關系,平行四邊形和梯形是不相容關系.又如:講「仰角」和「俯角」時,將這兩個概念進行對照比較,就不難區別誰是「仰角」,誰是「俯角」.再如,「圓心角」與「圓周角」,同學們已經知道了「圓心角」是頂點在圓心的角,由此及彼,大部分學生就可以得出「圓周角」的定義:頂點在圓上的角叫「圓周角」這又恰恰錯了.此時教師再將「圓周角」的定義敘述出來,學生就會覺得恍然大悟.這樣通過比較「圓心角」與「圓周角」的概念一目瞭然,清清楚楚. 對數學概念的深刻理解,是提高學生解題能力的基礎;反之,也只有通過解題,學生才能加深對概念的認識,才能更完整、更深刻地理解和掌握概念的內涵和外延.課本中直接運用概念解題的例子很多,教學中要充分利用.同時,對學生在理解方面易出錯誤的概念,要設計一些有針對性的題目,通過練習、講評,使學生對概念的理解更深刻、更透徹. 四、深入剖析,揭示本質 數學概念是數學思維的基礎,要使學生對數學概念有透徹清晰的理解,教師首先要深入剖析概念的實質,幫助學生弄清一個概念的內涵與外延.也就是從質和量兩個方面來明確概念所反映的對象.如,掌握垂線的概念包括三個方面:①了解引進垂線的背景:兩條相交直線構成的四個角中,有一個是直角時,其餘三個也是直角,這反映了概念的內涵.②知道兩條直線互相垂直是兩條直線相交的一個重要的特殊情形,這反映了概念的外延.③會利用兩條直線互相垂直的定義進行推理,知道定義具有判定和性質兩方面的功能.另外,要讓學生學會運用概念解決問題,加深對概念本質的理解.

3. 數學概念教學的方法與策略

要正確處理好傳授數學基礎知識,有關數學概念、公式、定理與發展學生邏輯思維的關系;處理好培養運算能力、空間想像能力與發展學生邏輯思維的關系。努力做到在傳授知識的基礎上發展智能,在發展智能的指導下傳授知識,使學生在掌握知識上達到高質量,在智能發展上達到高水平。

4. 數學概念教學方法具體是什麼

教學時注意概念的內涵和外延
概念的內涵指的是概念所反映對象的本質特徵;概念的外延指的是概念所反映的本質屬性的對象,概念的內涵是質的方面,概念的外延是概念量的方面,它說明概念所反映的事物有哪些.概念的內涵和外延是對立統一的,內涵明確,則外延清晰;外延清晰則內涵明確.例如在新課程必修4的角的概念的推廣的教學中,角的概念的內涵是平面內一條射線繞著端點從一個位置旋轉到另一個位置所成的圖形,外延就是角的分類:正角,負角和零角.在教學中,可以通過變式來明確概念的外延.
例:函數奇偶性的教學(人教A版)
函數的奇偶性是必修1的內容,是函數單調性之後很重要的一個性質.在教材中,通過具體的函數得到了偶函數的概念,
由,得到了奇函數的概念.教材中通過例5讓學生判斷函數的奇偶性,筆者認為,通過這樣的習題還沒有真正明確函數奇偶性這個概念的外延.
………………更多文章詳情詳見教育界雜志社官網,希望能幫到你!

閱讀全文

與數概念的教學方法相關的資料

熱點內容
學壓腿的正確方法 瀏覽:393
金花梨施肥的正確方法 瀏覽:693
有幾種鍛煉腰椎間盤突出的方法 瀏覽:636
康熙字典採用哪些注音方法 瀏覽:350
自測腸癌的方法和技巧 瀏覽:619
正確擦屁股的方法是 瀏覽:941
驗證是否為純合子可以用什麼方法 瀏覽:550
如何用簡單的方法製作海綿寶寶 瀏覽:392
用什麼方法治打氣嗝 瀏覽:460
股癬有什麼好方法斷根 瀏覽:513
rank函數使用方法 瀏覽:818
諾科壁掛爐使用方法 瀏覽:393
m6彈簧墊圈硬度檢測方法 瀏覽:611
vv6怠速抖動解決方法 瀏覽:275
寧德裝修檢測與治理方法 瀏覽:458
強迫鍛煉的方法視頻 瀏覽:805
職教基礎模塊上冊英語教學方法 瀏覽:875
牙周炎的圖片和治療方法 瀏覽:119
三首艾青的詩作並揣摩技巧方法 瀏覽:626
定量甲基化檢測方法 瀏覽:794