A. 容器密封的常見封口形式有哪幾種
1.卷邊封口
將罐蓋與罐身凸緣的周邊,通過相互捲曲鉤合的形式所形成的封口,稱為卷邊封口。在食品罐頭和飲料包裝中廣泛應用的圓柱形金屬罐就是採用這種形式的封口。為使封口的接合部分不致漏氣,一般在蓋子凹緣上塗覆膠液(橡膠或樹酷材料配製),經卷邊後夾在卷縫中以增強氣密性。
2.壓蓋封口
用王冠形圓蓋周邊的波紋與瓶口凸緣咬合所形成的封口,稱為壓蓋封口。這種封口,在瓶蓋與瓶口端面之間襯有橡膠或軟木製成的彈性密封墊片起密封作用。壓蓋封口密封可靠,易於啟封,是盛裝含碳酸氣液體飲料—啤酒、汽水和酒類用玻璃瓶容器包裝時常見的封口形式。
3.壓塞封口
壓入瓶口內的瓶塞,靠其本身的彈性變形構成瓶口嚴密密封的方法,稱為壓塞封口。瓶塞常用軟木、橡膠和塑料等具有一定彈性的材料製成,其結構和形狀各異。
瓶塞封口既可作直接封口,也可與瓶蓋一起作組合封口。以提高產品密封性、延長保存期。直接封口常用於瓶裝醬油、醋等液體食品的封口,組合封口常用於瓶裝高檔酒、葯品和有毒產品的封口。
4.滾紋封口
通過套在瓶口上的鋁蓋,滾壓出與瓶口螺紋形狀完全相同的螺紋的密封方法,稱為滾紋封口。由於啟封時,鋁蓋將沿著裙部周邊預成形的壓痕斷開,所以稱這種封口的蓋子為扭斷蓋:又由於這種封口便於識別啟封與否,因此國外把這種蓋子定名為「防盜蓋」。
這種封口用的扭斷蓋,在設計上有兩種形式:一種只在裙部圓周方向上壓印一定深度的痕跡,封口後,只要沿與螺紋相反的旋向施加一定的轉動力矩,瓶蓋即沿周邊壓痕扭斷,但壓邊環仍套在瓶頸上,使瓶子回收使用不便;另一種新設計的鋁蓋,在裙部的周向和軸向都有壓痕,啟封後,壓邊環沿周向和軸向壓痕自行斷開,便於舊瓶的回收使用。
滾紋封口不僅具有密封嚴密可靠、啟封方便、包裝外形美觀等優點,而且,由於能識別瓶內產品是否用過,所以特別適用於盛裝象葡萄酒、白蘭地等高檔酒類玻璃瓶的封口,也常用於象百事可樂之類飲料塑料瓶的封口。
B. 密封性檢測的檢測方法
1、水浸法:將被測容器泡入水中,通過觀察是否有氣泡、氣泡的多少判斷容器的密封性,這種測試辦法有可能損壞被測產品,另外,水浸法會導致檢測場地積水積泥,需頻繁清理。
2、干空氣法:通過抽真空或者空氣加壓,控制被測樣品內外壓力不同,若存在泄露,內外壓力之差將縮小。通過檢測空氣壓力變化可檢測密封性。檢測介質為干空氣,無毒無害,不破壞被測品,同時檢測環境干凈整潔。
3、示蹤氣體法:監測低壓測試工件的示蹤氣體濃度變化。典型的示蹤氣體有氦氣或SF6氣體等,它們都是惰性氣體,且在大氣中含量極少。例如,往被測件中充入氦氣,採用質譜分析儀可以檢測被測件氦氣的泄漏量。當然,還有放射性氣體示蹤檢測法。這種檢測方法精度極高。
鋁膜封口檢測:
本機主要由檢測裝置(包括瓶口鋁膜封口檢測和瓶身泄漏檢測)、人機界面、工控機、剔除裝置和配電櫃等組成,適用於高速的PE瓶灌裝生產線的泄漏檢測。
檢測功能:
主要檢查鋁膜假封、微泄漏、瓶身泄漏等。對鋁膜封口質量進行全自動、非接觸式在線檢測,並對不良品進行定位剔除。
技術特點:
鋁膜封口檢測機是本公司研製生產的一種高水平的視覺檢測設備,該設備融合了目前較為***的攝像和光學技術,通過高速計算機的智能圖分析系統和專家決策系統來判斷檢測項目是否合格。
D. 高效液相色譜儀原理及操作步驟
1. 高效液相色譜儀原理
高效液相色譜儀原理 高效液相色譜儀的使用和原理分析
高效液相色譜法(HPLC)是目前應用廣泛的分離、分析、純化有機化合物(包括能通過化學反應轉變為有機化合物的無機物)的有效方法之一。
在已知的有機化合物中,約有80%能用高效液相色譜法分離、分析,而且由於此法條件溫和,不破壞樣品,因此特別適合高沸點、難氣化揮發、熱穩定性差的有機化合物和生命物質。HPLC系統一般由輸液泵、進樣器、色譜柱、檢測器、數據記錄及處理裝置等組成。
其中輸液泵、色譜柱、檢測器是關鍵部位。有的儀器還有梯度洗脫裝置、在線脫氣機、自動進樣器、與柱或保護住、柱溫控制器等,現代HPLC儀還有微機控制系統,進行自動化儀器控制和數據處理。
制備型HPLC儀還備有自動餾分收集裝置。目前常見的HPLC儀生產廠家國外有Waters 公司、Agilent 公司(原HP公司)、島津公司等,國內有上海伍豐科學儀器有限公司,上海禾工科學儀器有限公司,大連依利特公司、北京創新通恆、北京溫分等。
一、輸液泵1.泵的構造和性能輸液泵是HPLC系統中最重要的部件之一。泵的性能好壞直接影響到整個質量和分析結果的可靠性。
輸液泵應具備如下性能:①流量穩定,其RSD應小於0.5%,這關繫到定性定量的准確性;②流量范圍寬,分析型應在0.1~10ml/min范圍內連續調,制備型應能達到100ml/min;③輸出壓力高,一般應能達到150~300KG/CM2:④液缸容積小;⑤密封性能好,耐腐蝕。泵的種類很多,按輸液性質可分為恆壓泵和恆流泵。
恆流泵按結構又可分為螺旋注射泵、柱塞往復泵和隔往復泵。恆壓泵受柱陰影響,流量不穩定;螺旋泵缸體太大,這兩種泵己被淘汰目前應用最多的是柱塞往復泵。
柱塞往復泵的液缸容積小,可至0.1ml,因此易於清洗和更換流動相,特別適合於再循環和梯度洗脫;改變電機轉速能方便地調節流量,流量不受柱壓影響;泵壓可達400KG/CM2。ADW主要缺點是輸出的脈沖性較大,現多彩採用雙泵系統來克服。
雙泵按連接方式可分為並聯式和串聯式,一般說來並聯泵的流量重現性較好(RSD為0.1%左右,串聯泵為0.2~0.3%),但出現故障的機會較多(因多了單向閥),價格也較貴。二、進樣器一般HPLC分析常用六通進樣閥(以美國RHEODYNE公司的7725和7725I型最常見),其關鍵部件由圓形密封墊子(轉子)和固定底座(定子)組成。
耐高壓(35~40MPA),進樣量准確,重復性好(0.5%),操作方便。六通閥進樣方式有部分裝液法和完全裝液法兩種。
①用部分裝液法進樣時,進樣量應不大於定量環體積的50%(最多75%),並要求每次進樣體積准確、相同。此法進樣的准確度和重復性決定於注器取樣的熟練程度,而且易產生由進樣引起的峰展寬。
②用完全裝液法進樣時,進樣量應不小於定量環體積的5~10倍9最少3倍,這樣才能完全置換定量環內和流動相,消除管壁效應,確保進樣的准確度及重復性。三、色譜柱色譜是一種分離分析手段,分離是核心,因此擔負分離作用的色譜柱是色譜系統的心臟。
對色譜柱的要求是柱效高、選擇性好,分析速度快等。市售的用於HPLC的各種微粒填料好多孔硅膠以及以硅膠為基質的鍵合相、氧化鋁、有機聚合物微球(包括離子交換樹脂)、多孔碳等,其粒度一般為3,5,7,10UM等,柱效理論值可達5~16萬/米。
對於一般的分析只需5000塔板數的柱效;對於同系物分析,只要500即可;對於較難的分離物質對則可採用高達2萬的柱子,因此一般10~30CM左右的柱長就能滿足復雜混合物分析的需要。柱效受柱內外因素影響,為使色譜柱達到最佳效率,除柱外死體積要小外,不要有合理的柱結構(盡可能減少填充床以外的死體積)及裝填技術。
即使最好的裝填技術,在柱中心部位和沿管壁部位的填充情況總是不一樣的,靠近管壁的部位比較疏鬆,易產生溝流,流速較快,影響沖洗劑的流形,使譜帶加寬,這就是管壁效應。這種管壁區大約是從管壁向內算起30倍料徑的厚度。
在一般的液相色譜系統中,柱外效應對柱效的影響遠遠大於管壁效應。四、檢測器HPLC的檢測器分為兩類:通用型檢測器和專用型檢測器。
1.通用型檢測器可連續測量色譜柱的流出物的全部特性變化,通常採用差分測量法,這類檢測器包括示差折光檢測器、介電常數檢測器、電導檢測器等,通用檢測器適用范圍廣,但由於對流動相有響應,因此易受溫度變化、流動相和組分的變化的影響,雜訊和漂移都比較大,靈敏度較低,不能用梯度洗脫。2.專用型檢測器用以測量被分離樣品組分某種特性的變化。
這類檢測器對樣品中組分的某種物理或化學性質敏感,而這一性質是流動相所不具備的,或至少在操作條件下不顯示。這類檢測器包括紫外檢測器、熒光檢測器、放射性檢測器等。
高效液相色譜儀的工作原理?
高效液相色譜儀工作原理;高壓泵將貯液罐的流動相經進樣器送入色譜柱中,然後從檢測器的出口流出,這時整個系統就被流動相充滿。當欲分離樣品從進樣器進入時,流經進樣器的流動相將其帶入色譜柱中進行分離,分離後不同組分依先後順序進入檢測器,記錄儀將進入檢測器的信號記錄下來,得到液相色譜圖。
高效液相色譜法是在經典色譜法的基礎上,引用了氣相色譜的理論,在技術上,流動相改為高壓輸送,色譜柱是以特殊的方法用小粒徑的填料填充而成,從而使柱效大大高於經典液相色譜(每米塔板數可達幾萬或幾十萬),同時柱後連有高靈敏度的檢測器,可對流出物進行連續檢測。
(4)口服溶液灌裝密封性分析方法擴展閱讀
高效液相色譜儀配置高壓二元泵或者低壓四元泵,而泵的沖程體積以及混合器的體積大小,均會對色譜基線噪音水平產生影響,特別是在梯度洗脫的時候。一般地泵的沖程體積越小以及混合器的體積相對越大,由輸液造成的脈沖相對越小,對於梯度變化的響應能力越高,基線越平緩,
在應用二元泵的時,需要注意的是,當二元混合中的其中一元流動相的比例小於5%的時候,特別是在使用正相等度洗脫對一些醫葯中間體及終產品進行手性拆分的時候,最好使用單泵預混合的方式。避免由於泵在低比例時泵液精度相對較差,而導致色譜基線出現沖程相關峰,
參考資料來源;搜狗網路--高效液相色譜儀
高效液相色譜儀的基本工作原理
高效液相色譜儀的基本工作原理
高效液相色譜儀的系統由儲液器、泵、進樣器、色譜柱、檢測器、記錄儀等幾部分組成。儲液器中的流動相被高壓泵打入系統,樣品溶液經進樣器進入流動相,被流動相載入色譜柱(固定相) 內, 由於樣品溶液中的各組分在兩相中具有不同的分配系數, 在兩相中作相對運動時, 經過反復多次的吸附- 解吸的分配過程, 各組分在移動速度上產生較大的差別, 被分離成單個組分依次從柱內流出, 通過檢測器時, 樣品濃度被轉換成電信號傳送到記錄儀,數據以圖譜形式列印出來。
HPLC原理是什麼
原理: 儲液器中的流動相被高壓泵打入系統,樣品溶液經進樣器進入流動相,被流動相載入色譜柱(固定相)內,由於樣品溶液中的各組分在兩相中具有不同的分配系數,在兩相中作相對運動時,經過反復多次的吸附-解吸的分配過程,各組分在移動速度上產生較大的差別。
被分離成單個組分依次從柱內流出,通過檢測器時,樣品濃度被轉換成電信號傳送到記錄儀,數據就可以以圖譜形式列印出來,以便研究人員分析。 (4)口服溶液灌裝密封性分析方法擴展閱讀: 高效液相色譜法(High Performance Liquid Chromatography \ HPLC)又稱「高壓液相色譜」、「高速液相色譜」、「高分離度液相色譜」、「近代柱色譜」等。
①高壓:流動相為液體,流經色譜柱時,受到的阻力較大,為了能迅速通過色譜柱,必須對載液加高壓。 ②高速:分析速度快、載液流速快,較經典液體色譜法速度快得多,通常分析一個樣品在15~30分鍾,有些樣品甚至在5分鍾內即可完成,一般小於1小時。
③高效:分離效能高。可選擇固定相和流動相以達到最佳分離效果,比工業精餾塔和氣相色譜的分離效能高出許多倍。
④高靈敏度:紫外檢測器可達0.01ng,進樣量在μL數量級。 ⑤應用范圍廣:百分之七十以上的有機化合物可用高效液相色譜分析,特別是高沸點、大分子、強極性、熱穩定性差化合物的分離分析,顯示出優勢。
⑥柱子可反復使用:用一根柱子可分離不同化合物 ⑦樣品量少、容易回收:樣品經過色譜柱後不被破壞,可以收集單一組分或做制備。 此外高效液相色譜還有色譜柱可反復使用、樣品不被破壞、易回收等優點,但也有缺點,與氣相色譜相比各有所長,相互補充。
高效液相色譜的缺點是有「柱外效應」。在從進樣到檢測器之間,除了柱子以外的任何死空間(進樣器、柱接頭、連接管和檢測池等)中,如果流動相的流型有變化,被分離物質的任何擴散和滯留都會顯著地導致色譜峰的加寬,柱效率降低。
高效液相色譜檢測器的靈敏度不及氣相色譜。 HPLC使用的色譜柱是很細的(1~6 mm),所用固定相的粒度也非常小(幾μm到幾十μm),所以流動相在柱中流動受到的阻力很大,在常壓下,流動相流速十分緩慢,柱效低且費時。
為了達到快速、高效分離,必須給流動相施加很大的壓力,以加快其在柱中的流動速度。為此,須用高壓泵進行高壓輸液。
高壓、高速是高效液相色譜的特點之一。HPLC使用的高壓泵應滿足下列條件: a. 流量恆定,無脈動,並有較大的調節范圍(一般為1~10 mL/min); b. 能抗溶劑腐蝕; c. 有較高的輸液壓力;對一般分離,60*10^5Pa的壓力就滿足了,對高效分離,要求達到150~300*10^5Pa。
⑴往復式柱塞泵 當柱塞推入缸體時,泵頭出口(上部)的單向閥打開,同時,流動相進入的單向閥(下部)關閉,這時就輸出少量的流體。 反之,當柱塞向外拉時,流動相入口的單向閥打開,出口的單向閥同時關閉,一定量的流動相就由其儲液器吸入缸體中。
這種泵的特點是不受整個色譜體系中其餘部分阻力稍有變化的影響,連續供給恆定體積的流動相。 ⑵氣動放大泵 其工作原理是:壓力為 p1 的低壓氣體推動大面積( SA )活塞A ,則在小面積( SB )活塞 B 輸出壓力增大至 p2 的液體。
壓力增大的倍數取決於 A 和 B 兩活塞的面積比,如果 A 與 B 的面積之比為 50 : 1 ,則壓力為 5 * Pa 的氣體就可得到壓力為 250*Pa 的輸出液體。這是一種恆壓泵。
參考資料:網路——高效液相色譜。
HPLC儀的工作原理是什麼?
高效液相色譜法是在經典色譜法的基礎上,引用了氣相色譜的理論,在技術上,流動相改為高壓輸送(最高輸送壓力可達4.9´107Pa);色譜柱是以特殊的方法用小粒徑的填料填充而成,從而使柱效大大高於經典液相色譜(每米塔板數可達幾萬或幾十萬);同時柱後連有高靈敏度的檢測器,可對流出物進行連續檢測。
特點 1.高壓:液相色譜法以液體為流動相(稱為載液),液體流經色譜柱,受到阻力較大,為了迅速地通過色譜柱,必須對載液施加高壓。一般可達150~350*105Pa。
2. 高速:流動相在柱內的流速較經典色譜快得多,一般可達1~10ml/min。高效液相色譜法所需的分析時間較之經典液相色譜法少得多,一般少於 1h 。
3. 高效:近來研究出許多新型固定相,使分離效率大大提高。 4.高靈敏度:高效液相色譜已廣泛採用高靈敏度的檢測器,進一步提高了分析的靈敏度。
如熒光檢測器靈敏度可達10-11g。另外,用樣量小,一般幾個微升。
5.適應范圍寬:氣相色譜法與高效液相色譜法的比較:氣相色譜法雖具有分離能力好,靈敏度高,分析速度快,操作方便等優點,但是受技術條件的限制,沸點太高的物質或熱穩定性差的物質都難於應用氣相色譜法進行分析。而高效液相色譜法,只要求試樣能製成溶液,而不需要氣化,因此不受試樣揮發性的限制。
對於高沸點、熱穩定性差、相對分子量大(大於 400 以上)的有機物(這些物質幾乎佔有機物總數的 75% ~ 80% )原則上都可應用高效液相色譜法來進行分離、分析。 據統計,在已知化合物中,能用氣相色譜分析的約佔20%,而能用液相色譜分析的約佔70~80%。
高效液相色譜按其固定相的性質可分為高效凝膠色譜、疏水性高效液相色譜、反相高效液相色譜、高效離子交換液相色譜、高效親和液相色譜以及高效聚焦液相色譜等類型。用不同類型的高效液相色譜分離或分析各種化合物的原理基本上與相對應的普通液相層析的原理相似。
其不同之處是高效液相色譜靈敏、快速、解析度高、重復性好,且須在色譜儀中進行。 高效液相色譜法的主要類型及其分離原理 根據分離機制的不同,高效液相色譜法可分為下述幾種主要類型: 1 .液 — 液分配色譜法(Liquid-liquid Partition Chromatography)及化學鍵合相色譜(Chemically Bonded Phase Chromatography) 流動相和固定相都是液體。
流動相與固定相之間應互不相溶(極性不同,避免固定液流失),有一個明顯的分界面。當試樣進入色譜柱,溶質在兩相間進行分配。
達到平衡時,服從於下式: 式中,cs—溶質在固定相中濃度;cm--溶質在流動相中的濃度; Vs—固定相的體積;Vm—流動相的體積。LLPC與GPC有相似之處,即分離的順序取決於K,K大的組分保留值大;但也有不同之處,GPC中,流動相對K影響不大,LLPC流動相對K影響較大。
a. 正相液 — 液分配色譜法(Normal Phase liquid Chromatography): 流動相的極性小於固定液的極性。 b. 反相液 — 液分配色譜法(Reverse Phase liquid Chromatography): 流動相的極性大於固定液的極性。
c. 液 — 液分配色譜法的缺點:盡管流動相與固定相的極性要求完全不同,但固定液在流動相中仍有微量溶解;流動相通過色譜柱時的機械沖擊力,會造成固定液流失。上世紀70年代末發展的化學鍵合固定相(見後),可克服上述缺點。
現在應用很廣泛(70~80%)。 2 .液 — 固色譜法 流動相為液體,固定相為吸附劑(如硅膠、氧化鋁等)。
這是根據物質吸附作用的不同來進行分離的。其作用機制是:當試樣進入色譜柱時,溶質分子 (X) 和溶劑分子(S)對吸附劑表面活性中心發生競爭吸附(未進樣時,所有的吸附劑活性中心吸附的是S),可表示如下: Xm + nSa ====== Xa + nSm 式中:Xm--流動相中的溶質分子;Sa--固定相中的溶劑分子;Xa--固定相中的溶質分子;Sm--流動相中的溶劑分子。
當吸附競爭反應達平衡時: K=[Xa][Sm]/[Xm][Sa] 式中:K為吸附平衡常數。[討論:K越大,保留值越大。
] 3 .離子交換色譜法(Ion-exchange Chromatography) IEC是以離子交換劑作為固定相。IEC是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的溶質離子進行可逆交換,依據這些離子以交換劑具有不同的親和力而將它們分離。
以陰離子交換劑為例,其交換過程可表示如下: X-(溶劑中) + (樹脂-R4N+Cl-)=== (樹脂-R4N+ X-) + Cl- (溶劑中) 當交換達平衡時: KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-] 分配系數為: DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-] [討論:DX與保留值的關系] 凡是在溶劑中能夠電離的物質通常都可以用離子交換色譜法來進行分離。 4 .離子對色譜法(Ion Pair Chromatography) 離子對色譜法是將一種 ( 或多種 ) 與溶質分子電荷相反的離子 ( 稱為對離子或反離子 ) 加到流動相或固定相中,使其與溶質離子結合形成疏水型離子對化合物,從而控制溶質離子的保留行為。
其原理可用下式表示: X+水相 + Y-水相 === X+Y-有機相 式中:X+水相--流動相中待分離的有機離子(也可是陽離子);Y-水相--流動相中帶相反電荷的離子對(如氫氧化四丁基銨、氫氧化十六烷基三甲銨等);X+Y---形成的。
液相色譜儀使用及工作原理
工作原理: 流動相通過輸液泵流經進樣閥,與樣品溶液混合,流經色譜柱,在色譜柱中進行吸附、分離,最後每一組分分別經過檢測器轉變為電訊號,在色譜工作站上出現相應的樣品峰。
液相色譜的使用: 首先對樣品進行預處理,然後進樣,進樣完畢後,清洗進樣口,每次分析結束後,清洗通道,最後關閉儀器。 (4)口服溶液灌裝密封性分析方法擴展閱讀: 液相色譜所用基本概念:保留值、塔板數、塔板高度、分離度、選擇性等與氣相色譜一致。
液相色譜所用基本理論:塔板理論與速率方程也與氣相色譜基本一致,但由於在氣相色譜中以液體代替氣相色譜中氣體作為流動相,而液體和氣體的性質不相同。 此外,液相色譜所用的儀器設備和操作條件也與氣相色譜不同,所以,液相色譜與氣相色譜有一定的差別。
主要有以下幾力『面: ①操作條件及應用范圍不同 對於氣相色譜,是加溫操作。僅能分析在操作溫度下能汽化而不分解的物質,對高沸點化合物、非揮發性物質、熱不穩定化合物、離子型化合物及高聚物的分離、分析較為困難,致使其應用受到一定程度的限制,據統計只有大約20%的機物能用氣相色譜分析。
而液相色譜是常溫操作,不受樣品揮發度和熱穩定性的限制,它非常適合相對分子量較大,難汽化,不易揮發或對熱敏感的物質、離子型化合物和高聚物的分離分析,大約佔有機物的70%~80%。 ②液相色譜能完成難度較高的分離工作 a.氣相色譜的流動相載氣是色譜惰性的,基本不參與分配平衡過程,與樣品分子無親和作用,樣品分子主要與固定相相互作用。
而在液相色譜中流動相液體也與固定相爭奪樣品分子,為提高選擇性增加了一個因素。也可選擇不同比例的兩種或兩種以上的液體做流動相,增加分離的選擇性。
b.液相色譜固定相類型多,如離子交換色譜和排阻色譜等,作為分析時,選擇餘地大;而氣相色譜並不可能。 c.液相色譜通常在室溫下操作,較低的溫度,一般有利於色譜分離條件的選擇。
③由於液體的擴散性比氣體的小105倍,因此,溶質在液相中的傳質速率慢,柱外效應就顯得特別重要;而在氣相色譜中,由色譜柱外區域引起的擴張可以忽略不計。 ④液相色譜中,制備樣品簡單,回收樣品也比較容易,而且回收是定量的,適合於大量制備,但液相色譜尚缺乏通用的檢測器,一起比較復雜,價格昂貴。
在實際應用中,這兩種技術是相互補充的。 綜上所述,液相色譜具有柱效高,選擇性高,靈敏性高,分析速度快,重復性好,應用范圍廣等優點,該法已成為現代分析技術的主要手段之一。
目前在化學,化工,醫葯,生化,環保,農業等科學領域獲得廣泛的應用。 高效液相色譜應用非常廣泛,幾乎遍及定量定性分析的各個領域。
(1)分離混合物 高效液相色譜法只要求樣品能製成溶液,不受樣品揮發性的限制,流動相可選擇的范圍寬,固定相的種類繁多,因而可以分離熱不穩定和非揮發性的、離解的和非離解的以及各種分子量范圍的物質。 通過與試樣預處理技術相配合,高效液相色譜法所達到的高解析度和高靈敏度,可分離並同時測定性質上十分相近的物質,能夠分離復雜混合物中的微量成分。
並且隨著固定相的發展,還可在充分保持生化物質活性的條件下完成對其的分離。 (2)生化分析 由於高效液相色譜法具有高解析度、高靈敏度、速度快、色譜柱可反復利用,流出組分易收集等優點,因而被廣泛應用到生物化學、食品分析、醫葯研究、環境分析、無機分析等各種領域,並已成為解決生化分析問題最有前途的方法。
(3)儀器聯用 高效液相色譜儀與結構儀器的聯用是一個重要的發展方向。高效液相色譜一質譜聯用技術受到普遍重視,如分析氨基甲酸酯農葯和多核芳烴等:高效液相色譜一紅外光譜聯用也發展很快,如在環境污染分析測定水中的烴類等.使環境污染分析得到新的發展 參考資料:網路——液相色譜。
液相色譜儀的原理是什麼?用來干什麼?
液相色譜儀的原理: 儲液器中的流動相被高壓泵打入系統,樣品溶液經進樣器進入流動相,被流動相載入色譜柱(固定相)內,由於樣品溶液中的各組分在兩相中具有不同的分配系數,在兩相中作相對運動時,經過反復多次的吸附-解吸的分配過程,各組分在移動速度上產生較大的差別,被分離成單個組分依次從柱內流出,通過檢測器時,樣品濃度被轉換成電信號傳送到記錄儀,數據以圖譜形式列印出來。
主要用於對高沸點、難氣化合物的混合物通過色譜柱核淋洗劑並以實現分離。應用於生物化學、生物醫學、環境化學、石油化工等部門。
(4)口服溶液灌裝密封性分析方法擴展閱讀液相色譜儀根據固定相是液體或是固體,又分為液-液色譜(LLC)及液-固色譜(LSC)。現代液相色譜儀由高壓輸液泵、進樣系統、溫度控制系統、色譜柱、檢測器、信號記錄系統等部分組成。
與經典液相柱色譜裝置比較,具有高效、快速、靈敏等特點。 高效液相色譜儀主要有進樣系統、輸液系統、分離系統、檢測系統和數據處理系統。
進樣系統一般採用隔膜注射進樣器或高壓進樣間完成進樣操作,進樣量是恆定的。這對提高分析樣品的重復性是有益的。
輸液系統該系統包括高壓泵、流動相貯存器和梯度儀三部分。高壓泵的一般壓強為l.47~4.4X10Pa,流速可調且穩定,當高壓流動相通過層析柱時,可降低樣品在柱中的擴散效應,可加快其在柱中的移動速度,這對提高解析度、回收樣品、保持樣品的生物活性等都是有利的。
分離系統該系統包括色譜柱、連接管和恆溫器等。色譜柱一般長度為10~50cm(需要兩根連用時,可在二者之間加一連接管),內徑為2~5mm,由"優質不銹鋼或厚壁玻璃管或鈦合金等材料製成,住內裝有直徑為5~10μm粒度的固定相(由基質和固定液構成)。