導航:首頁 > 研究方法 > 概念教學數學教學方法的探索

概念教學數學教學方法的探索

發布時間:2024-05-11 11:53:38

如何在小學數學教學中有效開展概念教學

數學概念不僅是小學數學知識的基本要素,也是培養和發展學生數學能力的重要內容。對它的理解和掌握,關繫到學生學習數學的興趣,關繫到學生計算能力和邏輯思維能力的培養,關繫到學生解決實際問題的能力。由於小學生的年齡特點,直觀形象思維制約了對數學中抽象概念的掌握,導致孩子們在學習和運用概念的過程中,經常出現這樣或那樣的錯誤。那麼,怎樣才能使數學概念教學更有效呢?
一、數學和生活實際聯系,引入概念
數學知識來源於生活,又應用於生活。把點滴生活經驗變成系統數學知識目的在於使其更好地運用到生活中去,除了在課堂上一些與生活相連的習題更好體會知識的還是生活本生。
例如,在教學《認識鍾表》時,認識整時和大約幾時這兩個數學概念本身就比較抽象,你若直接告訴孩子看鍾點的方法:分針對著12,時針對著幾就是幾時,1時=60分,1分=60秒,孩子未必真正理解,而且長期地這樣教學學生就不會去思考,產生一種依賴的心理。因此我們在課起始時便以猜謎揭示課題,而後分認識鍾面,認識整時和大約幾時三步走。認識鍾面環節讓學生根據已有經驗說說鍾面的認識,為了讓學生的介紹更為有針對性把提問變成「你知道鍾面上有什麼?」這樣學生根據手中的鬧鍾很容易回答。在學生撥鍾也讓學生自由的撥出一些整時並說說在這一時刻在干什麼,這樣學生對各個時段的認識就能聯系生活而不僅僅停留在1~12各個數上。在「兩個8時」這一環節,讓學生根據生活經驗充分的討論兩個8時的存在和不同,再指導學生會照樣子用一句話說一說,同時從數學角度提醒學生在平時說話時要注意用上「早晨、上午、下午、晚上」 等詞語,這樣說起來就更清楚明白。鍾面、整時和大約幾時三個環節層層遞進,每一個環節與學生經驗緊密聯系。
低年級小學生,由於年齡、知識和生活的局限,理解一個概念主要是憑借事物的具體形象。因此,在低年級數學概念教學的過程中,要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。

二、迎合學生學習興趣,引入概念
托爾斯泰說過:「成功的教育所需要的不是強制,而是激發學生的興趣。」興趣是成功的秘訣,是獲取知識的開端,是求知慾的基礎。學生對學習數學的興趣,直接影響到課堂教學效率的高低。抽象的理論如果再加上乾巴巴的講解,必然不會引起學生的學習興趣。
例如,在教學《認識角》時, 既要讓學生感知直角、銳角、鈍角等不同種類的角,又要注意變化角的大小和角的開口方向,這樣才能獲得對角的清晰認識。教師可以事先做好一個只露出三角形一個角的教具,讓學生觀察露出的一個角,判斷整個三角形是什麼三角形。當露出一個直角時,學生馬上回答這是個直角三角形;當露出一個鈍角時,學生馬上回答這是個鈍角三角形;當露出一個銳角時,學生就自然而然地回答這是個銳角三角形。這時教師拿出的卻不是銳角三角形,這樣,學生就有了懸念:為什麼有一個直角的是直角三角形,有一個鈍角的是鈍角三角形?而一個角是銳角的三角形就不一定是銳角三角形了呢?這時學生強烈的求知慾已經成為一種求知的「自我需要」,學生的學習興趣得到了激發,使興趣成為學生學習的動力,為教學新概念創造良好的學習氣氛,使學生在獲得概念的整個過程中感到學習的快樂。

三、動手操作,引入概念
低段小學生他們愛擺弄東西,什麼都想嘗試。但若遇到困難而無法解決時,操作的積極性就會下降。所以利用學生這種心理適當安排動手嘗試的學習內容可以激發起學生的學習興趣,更好得形成概念。
例如,在教學《米和厘米》時,在認識了「厘米」以後我安排學生通過測量,看看你身體上哪個部位的長度最接近一厘米。學生的積極性很高,先是拿出尺子不停的比劃,然後三五成群的議論開了,積極主動地去尋求答案。在交流想法時,小朋友不僅給出了我想要的答案,更讓我收獲了不少的驚喜。
學生在操作、實踐中獲得感性認識,經歷「充分感知-豐富表象-領悟內涵」的過程,在頭腦中切實、清楚地建立了1厘米的實際長度和空間觀念,突出了本節課的教學重點。

四、巧用多媒體,引入概念
應用多媒體輔助教學,充分激活課堂教學中的各個要素,全方位地調動和發揮教師在課堂教學中的主導作用和學生學習的主體作用,建立合理的教與學的關系,
例如,在教學《認識分數》時,我設計了這樣一個動畫:周末,同學們去野餐,在優美的音樂的聲中,一群活潑可愛的小朋友來到了郊外,貼近生活化的情境一下子就吸引了學生的注意力。跟著提出問題:「把8個蘋果和4瓶果汁平均分給2人,每人分得多少」?學生回答後動畫演示分得的結果,非常直觀地顯示出「平均分」,加強了學生對「平均分」這個概念的理解。接著提出:「把一個生日蛋糕平均分成2份,每人分得多少」?演示「一半」,提出「一半」用什麼數來表示?自然地引出本節課要研究的認識分數。
我們在教學中,要結合概念的特點和學生的實際,靈活掌握使用,優化數學概念教學,提高概念教學的有效性,更好地進行概念教學。

❷ 數學概念教學方法具體是什麼

數學概念是抽象化的空間形式和數量關系,是反映數學對象本質屬性的思維形式。數學概念也是數學基礎知識和基本技能的核心,它是理解、掌握其它數學知識的基礎,對培養學生的邏輯思維和靈活運用知識實現遷移的能力有重要的作用,在數學課堂中如何有效地實施概念教學,直接影響教學效果的提高。現結合數學概念教學的實踐,談幾點自己的認識與做法。
一、重視教學情境創設,實現概念引入的自然化
數學教材多是直接給定概念,教師應遵循高中數學新課標的要求,加強概念的引入,引導學生經歷從具體實例抽象出數學概念的過程。合理設置情境,使學生積極參與教學,了解知識發生、發展的背景和過程,使學生感受到學習的樂趣,這樣也能使學生加深對概念的記憶和理解。
1.以數學史話引入概念
教學中,適當引入與數學概念相關的故事,並巧妙處理,既可激發學習興趣,又可達到教育之目的。如教曲線方程時講講笛卡爾和費馬;學數列時講數學家高斯故事;講二項式定理時向學生介紹楊輝等。在故事引入的同時鼓勵學生勇於探索,培養他們愛科學、學科學、用科學的科學精神。
2.以實際問題引入概念
數學概念來源於實踐,又服務於實踐。從實際問題出發引入概念,使得抽象的數學概念貼近生活,使學生易於接受,還可以讓學生認識數學概念的實際意義,增強數學的應用意識。例如可從教室內牆面與地面相交,且二面角是直角的實際問題引入「兩個平面互相垂直」的概念。
3.利用學生探究實現概念的自然引入
以概念為基礎,以過程為導向,是概念教學的基本理念。讓學生在學習中發現問題,並通過一定的方式解決問題,這是新課程理念的最好體現。在概念教學過程中,教師應在學生現有的知識背景、能力水平和心理特點的基礎上,給學生提供適當的範例,引導學生對實例進行觀察、比較,對概念進行假設、驗證,從而獲得正確的概念。如在「異面直線距離」的概念教學時,不妨先讓學生回顧學過的有關距離的概念,如兩點間的距離、點到直線的距離、兩平行線間的距離,引導學生發現這些距離的共同特點是最短與垂直。然後啟發學生思考在兩條異面直線上是否也存在這樣的兩點,它們間的距離最短?如果存在,有什麼特徵?經過探索,得出如果這兩點的連線段和兩條異面直線都垂直,則其長是最短的,並通過實物模型演示確認這樣的線段存在。在此基礎上,自然地得到「異面直線距離」的概念。在引入過程中調動了學生積極性,培養了勇於發現,大膽探索的精神。
二、善於解剖概念,實現概念教學的深刻化
數學概念是為了解決數學問題,對概念理解不清,在解題時就會出現錯誤;對概念理解不透徹,常會遇到問題束手無策。要正確深刻地理解概念絕非易事,數學概念具有嚴密的科學性,因此概念教學應讓學生准確把握概念的內涵和外延,教師要根據學生的知識結構和能力特點,從多方面著手,適當引導學生剖析概念,抓住概念的實質。在教學中可以從以下幾個方面解剖概念:
1.強調概念中的關鍵詞語
如對函數概念中的「任何」與「唯一」要重點強調。然後舉例 ,前者可以稱 是 的函數,後者不能稱 是 的函數。因為對於任何一個 ,不是對應唯一 。這樣通過正反實例,強調概念中的關鍵詞語,更能加深概念的理解。
2.注重數學語言的翻譯
數學語言有文字語言、符號語言、圖形語言。符號語言有較強的概括性,更能反映概念的本質。如等差數列的概念可用符號「 」( 為常數)概括。用定義證明一個數列是等差數列時,就是應用概念的符號語言。圖形語言則能更形象地反映概念的內容。如講「交集」概念時,用文氏圖表示「A B」,可以很容易理解概念。
3.注重相似概念的對比分析
有比較才有鑒別。用對比方法找出容易混淆的概念的異同點,有助於學生區分概念,獲取准確、明晰的認識。比如對分類計數原理與分步計數原理、排列與組合的概念,就可以通過概念對比,並結合實例的方式加深概念理解。
三、精心設計練習,實現概念教學的持續化
數學概念教學的主要目的是讓學生在理解概念的基礎上,運用知識解決數學問題,提高數學能力,全面提高學生素質。所以在練習設計上一定要精、針對性強,便於提高學生的能力。
1.加強應用概念中易錯原因剖析
很多概念本身就是解題方法。如「反函數」概念,就已經體現了反函數求法:「反解 」——「將 與 互換」——「標明反函數的定義域」(要通過原函數的值域來確定)。在反函數的求解中,學生常出現反函數定義域由反函數解析式本身確定而導致的錯誤。如果注意在解題中強化反函數概念以及它的由來,就可以避免這樣的錯誤了。
2.加強概念的逆用、變用,從中獲得解題方法

❸ 概念教學的方法

概念教學的基本方法:

一、注重概念的來源和形成

數學概念不是簡單的由數字推導出的結論,其本質是人類對現實世界空間形式和數量關系的概括反映,是從現實生活中抽象出來的真理。概念的形成過程是通過對系列感性材料進行認識、分析、抽象和概括後得出的。認識任何事物都必須先弄清其來龍去脈,數學概念也同樣如此,有了這一前提,既消除了學生對於數學概念抽象、死板的印象,又活躍了課堂氛圍,調動了學生學習的積極性。在傳統的數學概念教學中,一般採取「概念加例題」的方式,不利於學生對概念的理解。注重概念的來源和形成過程,能夠從本質上完整地揭示概念的本質屬性,使學生對理解概念具備思想基礎,同時也能培養學生從具體到抽象的思維方法。

二、注重概念的變式練習

真正掌握概念必須學會各種變式練習,變式練習既是知識轉化為技能的關鍵途徑,也是鞏固學習成果的重要方法。變式訓練,就是在數學教學過程中對概念、性質、定理、公式,以及問題從不同角度、不同層次、不同情形、不同背景做出有效的變化,使其條件或形式發生變化,而本質特徵不變。

三、注重結合生活實例

概念的形成依賴於感性認識,卻以理性認識的抽象符號和語言表現出來。根據心理學研究,學生更容易接受具體的感性認識。比如,你描述了若干「圓」的特徵,都不如直接拿一個實物來講解一下容易理解。在數學教學過程中,各種形式的直觀教學,是提供豐富、正確的感性認識的主要途徑,所以在講述新概念時,從引導學生觀察和分析有關具體實物入手,更容易揭示概念的本質特徵。

四、掌握概念是學好數學的基礎,在教學中教師應注重引導學生形成良好的概念認知結構,培養學生從概念的聯系中尋找解決問題的思路和方法的能力。本文介紹的數學概念教學的方法僅供參考,總的來講,初中數學概念的教學沒有固定的模式,只要我們根據學生的具體情況,從學生的心理出發,用各種生動活潑的教學方式調動起他們的學習積極性,讓他們充分參與進來,全方位開發創新思維,就一定會收到事半功倍的成效。

初中數學概念教學的基本方法

2數學概念的主要特徵
1)數學概念的組成 數學概念通常由概念的名稱、定義、例子、屬性和符號組成。如等邊三角形這個概念,概念的名稱是「等邊三角形」(符號是「等邊△」),數學概念具有抽象與具體的雙重性。 數學概念代表的是一類對象而不是個別事物,它在一定范圍內具有普遍意義。如「等邊三角形」這個概念代表的是各種顏色、大小抽象的等邊三角形,而任何具體顏色、大小的等邊三角形都只是它的正面例子。數學概念是數學命題、數學推理的基礎成分,就整個一個數學系統而言,概念是個實實在在的東西,這是數學概念具體性的一面。

2)數學概念的概括性強,如「等邊三角形」就是對千千萬萬個具體的等邊三角形的高度概括的認識。

3)數學概念的名稱往往用特定的數學符號表示,如「等腰△」、「y=sinx」這些符號表示,使數學概念具有形式和簡明的特點。

4)數學概念具有系統性。每一數學分支的概念由原名出發,經過不斷抽象定義,逐步形成一個嚴密的概念系統。就某一具體知識而言,相關的概念也組成一個系統。例如,與三角形這一知識相關的概念,邊、角、高、中線………組成一個關於三角形概念的系統。

3數學概念教學方法
一、注重利用生活實例引入概念

概念屬於理性認識,它的形成依賴於感性認識,學生的心理特點是容易理解和接受具體的感性認識。教學過程中,各種形式的直觀教學是提供豐富、正確的感性認識的主要途徑。所以在講述新概念時,從引導學生觀察和分析有關具體實物人手,比較容易揭示概念的本質和特徵。

二、注重剖析,揭示概念的本質

數學概念是數學思維的基礎,要使學生對數學概念有透徹清晰的理解,教師首先要深入剖析概念的實質,幫助學生弄清一個概念的內涵與外延。也就是從質和量兩個方面來明確概念所反映的對象。

三、注重概念的形成過程

許多數學概念都是從現實生活中抽象出來的。講清它們的來源,既會讓學生感到不抽象,而且有利於形成生動活潑的學習氛圍。一般說來,概念的形成過程包括:引入概念的必要性,對一些感性材料的認識、分析、抽象和概括,注重概念形成過程,符合學生的認識規律。在教學過程中,如果忽視概念的形成過程,把形成概念的生動過程變為簡單的「條文加例題」,就不利於學生對概念的理解。因此,注重概念的形成過程,可以完整地、本質地、內在地揭示概念的本質屬性,使學生對理解概念具備思想基礎,同時也能培養學生從具體到抽象的思維方法。

四、注重通過比較鞏固對概念的理解

鞏固是概念教學的重要環節。心理學原理認為:概念一旦獲得,如不及時鞏固,就會被遺忘。鞏固概念,首先應在初步形成概念後,引導學生正確復述。這里絕不是簡單地要求學生死記硬背,而是讓學生在復述過程中把握概念的重點、要點、本質特徵,同時,應注重應用概念的變式練習。恰當運用變式,能使思維不受消極定勢的束縛,實現思維方向的靈活轉換,使思維呈發散狀態。

4數學概念有效方式
一、重視學生原有認知結構,拓展聯想空間

新概念學習的前提是學生具有良好的認知結構和豐厚的知識積累,必須喚起學生原有認知結構中的有關知識和生活經驗。有些教師認為學生已具備了相關知識的儲備,沒有必要進行復習,結果出現學生對新概念茫然混沌、理解碎裂的狀況。在案例教學中,三角函數也是反映兩個變數之間的關系,為突出函數的本質,我在教學中引導學生復習已學過的函數,再順勢揭題。

三、經歷數學概念思維過程,體驗成長快樂 。數學概念的教學就應該成為思維的體操,積極展示思維的發生、發展,從具體到抽象,讓概念在條理中、在生動活潑的思維歷練中自然生成。課例中,通過問題的設計和不斷的探究,讓學生體會到在直角三角形中:銳角固定,則這個角的對邊與鄰邊的比值固定。自然得出:銳角變化,則這個角的對邊與鄰邊的比值隨之變化。正切概念來之自然、呼之欲出。

二、再現數學概念現實背景,激發學習興趣

數學來源於生活,服務於生活。龐加萊曾講過這樣一個故事:教室里,先生對學生說「圓周是一定點到同一平面上等距離點的軌跡」,可學生聽後面面相覷,誰也不明白圓周是什麼,於是先生拿起粉筆在黑板上畫了一個圓圈,學生們立即歡呼起來「啊,圓周就是圓圈啊,明白了」,這一故事告訴我們進行概念教學時,教師應從實際出發,創設情境,提出問題,讓學生在滿腹狐疑中覺得有必要學習這個概念。

四、理解數學概念內涵外延,構建問題模式 。多角度、多變式、循序漸進的安排概念問題的訓練是概念固化的關鍵,這個環節的成功與否直接影響學生的解題能力的提高。案例中,既回歸生活(坡面),又對概念的內涵和外延進行了例題設計,強化了對正切概念的本質認識,為下課時正弦、餘弦概念的學習打好了基礎。

❹ 數學概念教學的方法與策略

要正確處理好傳授數學基礎知識,有關數學概念、公式、定理與發展學生邏輯思維的關系;處理好培養運算能力、空間想像能力與發展學生邏輯思維的關系。努力做到在傳授知識的基礎上發展智能,在發展智能的指導下傳授知識,使學生在掌握知識上達到高質量,在智能發展上達到高水平。

❺ 如何做好數學概念教學

概念是客觀事物本質屬性在人們頭腦中的反映。數學概念是反映現實世界的空間形式和數量關系的本質屬性的思維形式。在中學數學教學中,正確理解數學概念是掌握數學知識的前提,是學好定理、公式、法則和數學思想的基礎,搞清概念是提高解題能力的關鍵。只有對概念理解得深透,才能在解題中做出正確的判斷。初中數學教學內容里有大量的數學概念,它既是數學教學的重要環節,又是數學學習的核心。因此,作為教師在教學中必須加強數學概念的教學。
一、做好概念的引入
1.從實際引入。概念屬於理性認識,它的形成依賴於感性認識,學生的心理特點則是容易理解和接受具體的感性認識,所以在講述新概念時,從引導學生觀察和分析有關具體實物入手,比較容易揭示概念的本質和特徵。例如,講「數軸」的概念時,教師可模仿秤桿上用點表示物體的重量。秤桿具有三個要素:①度量的起點;②度量的單位;③明確的增減方向。這樣以實物啟發人們用直線上的點表示數,從而引出了數軸的概念,讓學生從先對概念的現實原型有所感受,再將抽象的特徵濃縮成數學概念。教學過程中,各種形式的直觀教學是提供豐富、正確的感性認識的主要途徑。
2.從舊概念的基礎上引入。在教學新概念前,如果能對學生認知結構中原有的適當概念作一些類比引入新概念,則有利於促進新概念的形成。例如:在教學一元二次方程時,可先復習一元一次方程,因為一元一次方程是基礎,一元二次方程是延伸,復習一元一次方程是合乎知識邏輯的,二者的差異僅在於未知數的最高次數不同,因此很容易建立一元二次方程的概念。
二、抓住概念的本質
1.揭示含義,突出關鍵詞。數學概念嚴謹、准確、簡練。教師的語言對於學生感知教材、形成概念具有重要的意義,因此要特別注意用詞的嚴格性和准確性。教師要用生動、形象的語言講清概念中關鍵的字、詞、句的意義,這是指導學生掌握概念並認識概念的前提。
例如:「含有相同的字母,並且相同字母的指數也相同的項叫做同類項。」這個概念中,可抓住「相同」這一關鍵字作分析:出現了幾次相同?相同的是什麼?又如「最簡二次根式」的概念中,要抓住滿足的兩個條件這些關鍵字眼。

期刊文章分類查詢,盡在期刊圖書館
只有學生真正理解了概念,那麼在解決問題的時候,才能得心應手,不會出現錯誤。
2.弄清概念的內涵和外延。數學概念的內涵反映了數學對象的本質屬性,外延是數學概念所有對象的總和,對概念的深化必須從概念的內涵和外延上作深入的分析。剖析概念的內涵就是抓住概念的本質特徵。例如教學正方形的概念時,已學過平行四邊形、矩形、菱形的概念,教學時可通過對正方形與矩形、菱形的概念作比較分析,發現正方形概念的內涵中包括矩形和菱形概念的內涵,從而在外延關繫上得出正方形是特殊的矩形和菱形,而它們又都是特殊的平行四邊形。從對正方形概念的教學,轉向對平行四邊形、矩形、菱形和正方形之間的區別及其聯系的分析,進而把平行四邊形的知識系統化了。教學中注意引導學生從概念的內涵和外延上加以區別,找出它們的異同點,不僅有利於學生掌握數學概念,也有助於培養學生思維的廣闊性,提高學生的辯證思維能力。
3.剖析變化,深化概念。數學概念都是從正面闡述,一些學生只從表面文字上理解,碰到具體的數學問題卻難以做出正確的判斷。所以在學生正面認識概念的基礎上,可通過反例或變式從反面剖析數學概念,凸顯隱蔽的本質要素,加深對概念理解的全面性。有些學生對概念的全面理解不可能一蹴而就,而是要經歷「實踐——認識——再實踐——再認識」的過程,通過對後續知識的學習回過頭來再對概念進行加深理解,遵循「循環反復,螺旋上升」的學習原則。
三、注重概念的運用,升華概念
例如,對一次函數概念的掌握,可通過下列練習:
①如果y=(m+3)x-5是關於x的一次函數,則m=()。
②如果y=(m+3)x-5是關於x的一次函數,則m=()。
③如果y=(m+3)x+4x-5是關於x的一次函數,則m=()。
學習數學概念的目的,就是用於實踐,因此要讓學生通過實際操作去掌握概念、升華概念。概念的獲得是由個別到一般,概念的應用則是從一般到個別。學生掌握概念不是靜止的,而是主動在頭腦中進行積極思維的過程,它不僅能使已有知識再一次形象化、具體化,而且能使學生對概念的理解更全面、更深刻。
四、利用先進教學手段,使抽象概念具體化
有些數學概念對學生來說抽象難懂,是教學中的難點。而利用多媒體計算機的優勢,使教學的表現形式更加形象生動,既有利於提高學生學習的積極性,又充分揭示了數學概念的形成與發展。例如學習兩圓的位置關系時,通過多媒體的演示,讓學生對抽象的概念有了更直觀的體驗與認識。
數學概念教學對整個數學教學起著至關重要的作用,學生透徹牢固地掌握概念是提高教學質量的關鍵。在平時的概念教學中應嘗試運用不同的教學方法,揭示概念的形成與發展,做好概念的鞏固和應用,完善學生的認知結構,發展學生的思維能力,使不同的人在數學上得到不同的發展。

閱讀全文

與概念教學數學教學方法的探索相關的資料

熱點內容
隊列研究中對照人群的選擇方法 瀏覽:569
什麼是研究的系統性方法 瀏覽:275
明彩筆的使用方法 瀏覽:581
附子的作用及食用方法 瀏覽:87
哪些方法可使沉澱更快 瀏覽:424
離心泵的管道安裝方法 瀏覽:508
刮肝經的正確方法 瀏覽:564
大紅酸枝傢具鑒別真假方法 瀏覽:610
流產後閉經的治療方法 瀏覽:715
什麼方法可以讓陰莖變大 瀏覽:767
用什麼方法詛咒人靈驗 瀏覽:438
早期痔瘡的治療方法 瀏覽:634
簡單的讓奶多的方法 瀏覽:328
物理研究方法及舉例 瀏覽:142
鋼琴教學方法都有哪些 瀏覽:125
另類教學方法日本電影 瀏覽:184
新鮮橄欖怎麼保存方法 瀏覽:534
鍵盤保存方法圖片大全 瀏覽:325
三爪拉馬使用方法視頻 瀏覽:544
亢奮型孩子的教學方法 瀏覽:566