導航:首頁 > 研究方法 > 大數據分析方法分類分析

大數據分析方法分類分析

發布時間:2024-04-19 11:16:12

❶ 大數據的分析手段有都有哪幾種

1.分類



分類是一種基本的數據分析方式,數據根據其特點,可將數據對象劃分為不同的部分和類型,再進一步分析,能夠進一步挖掘事物的本質。



2.回歸



回歸是一種運用廣泛的統計分析方法,可以通過規定因變數和自變數來確定變數之間的因果關系,然後建立回歸模型,並且根據實測數據來求解模型的各個參數,之後再評價回歸模型是否可以擬合實測數據,如果能夠很好的擬合,則可以根據自變數作進一步預測。



3.聚類



聚類是根據數據的內在性質將數據分成一些聚合類,每一聚合類中的元素盡可能具有相同的特性,不同聚合類之間的特性差別盡可能大的一種分類方式,其與分類分析不同,所劃分的類是未知的,因此,聚類分析也稱為無指導或無監督的學習。



4.相似匹配



相似匹配是通過一定的方法,來計算兩個數據的相似程度,相似程度通常會用一個是百分比來衡量。相似匹配演算法被用在很多不同的計算場景,如數據清洗、用戶輸入糾錯、推薦統計、剽竊檢測系統、自動評分系統、網頁搜索和DNA序列匹配等領域。



5.頻繁項集



頻繁項集是指事例中頻繁出現的項的集合,如啤酒和尿不濕,Apriori演算法是一種挖掘關聯規則的頻繁項集演算法,其核心思想是通過候選集生成和情節的向下封閉檢測兩個階段來挖掘頻繁項集,目前已被廣泛的應用在商業、網路安全等領域。



6.統計描述



統計描述是根據數據的特點,用一定的統計指標和指標體系,表明數據所反饋的信息,是對數據分析的基礎處理工作,主要方法包括:平均指標和變異指標的計算、資料分布形態的圖形表現等。



關於大數據的分析手段有都有哪幾種,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。


以上是小編為大家分享的關於大數據的分析手段有都有哪幾種?的相關內容,更多信息可以關注環球青藤分享更多干貨

❷ 數據分析有哪些分類

常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

❸ 教育大數據分析方法主要包括哪三類

一、大數據與大數據分析概述

隨著數據獲取、存儲等技術的不斷發展,以及人們對數據的重視程度不斷提高,大數據得到了廣泛的重視,不僅僅在IT領域,包括經濟學領域、醫療領域、營銷領域等等。例如,在移動社交網路中,用戶拍照片、上網、評論、點贊等信息積累起來都構成大數據;醫療系統中的病例、醫學影像等積累起來也構成大數據;在商務系統中,顧客購買東西的行為被記錄下來,也形成了大數據。

時至今日,大數據並沒有特別公認的定義。有三個不同角度的定義:(1)「大數據」指的是所涉及的數據量規模巨大到無法通過人工在合理時間內達到截取、管理、處理並整理成為人類所能解讀的信息[1]。(2)「大數據」指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理的方法的數據[2]。(3)「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

通常把大數據的特點歸納為4個V,即數據量大(Volume)、數據類型多(Varity)、數據的價值密度低(Value)以及數據產生和處理的速度非常快(Velocity)。

對大數據進行分析可以產生新的價值。數據分析的概念誕生於大數據時代之前,但傳統的數據分析和大數據分析是不同的。傳統的數據分析往往是由客戶提出一個問題,分析者圍繞該問題建立一個系統,進而基於該系統解釋這個問題;而大數據分析有時候並沒有明確的問題,而是通過搜集數據,瀏覽數據來提出問題。

另一方面,傳統的數據分析是在可用的信息上進行抽樣,大數據分析則是對數據進行不斷的探索,通過全局分析連接數據,達到數據分析的目的。

傳統的數據分析的方法,往往是大膽假設小心求證,先做出假設,再對數據進行分析,從而驗證先前的假設;而大數據分析則是對大數據進行探索來發現結果,甚至發現錯誤的結果,之後再通過數據驗證結果是否正確。

因此,傳統的數據分析可以看成一種靜態的分析,大數據分析可以看成一種動態的分析。盡管如此,大數據分析和傳統數據分析也並非是涇渭分明的,傳統數據分析的方法是大數據分析的基礎,在很多大數據分析的工作中仍沿用了傳統數據分析的方法。

基於上述討論,我們給出「大數據分析」的定義:用適當的統計分析方法對大數據進行分析,提取有用信息並形成結論,從而對數據加以詳細研究和概括總結的過程。

大數據分析分為三個層次[3],即描述分析、預測分析和規范分析。描述分析是探索歷史數據並描述發生了什麼(分析已經發生的行為),預測分析用於預測未來的概率和趨勢(分析可能發生的行為),規范分析根據期望的結果、特定場景、資源以及對過去和當前事件的了解對未來的決策給出建議(分析應該發生的行為)。例如,對於學生學習成績的分析,描述分析是通過分析描述學生的行為,如是否成績高的同學回答問題較多;預測分析是根據學生的學習行為數據對其分數進行預測,如根據學生回答問題的次數預測其成績;而規范分析則是根據學生的數據得到學生下一步的學習計劃,如對學生回答問題的最優次數提出建議。

大數據分析的過程可以劃分為如下7個步驟:(1)業務調研,即明確分析的目標;(2)數據准備,收集需要的數據;(3)數據瀏覽,發現數據可能存在的關聯;(4)變數選擇,找出自變數與因變數;(5)定義模式,確定模型;(6)計算模型的參數;(7)模型評估。

我們以預測學生學習成績為例解釋上述過程。首先,我們的目的是根據學生的行為預測學習成績。接下來,對於傳統的方法來說,通過專家的分析確定需要什麼數據,比如專家提出對學生成績有影響的數據,包括出勤率、作業的完成率等,可以從數據源獲取這樣的數據;大數據分析的方法有所不同,是找到所有可能相關的數據,甚至包括血型等,這些數據與成績之間的關系未必有影響,就算發現了關系也未必可以解釋,但是獲取盡可能多的數據有可能發現未知的關聯關系。

❹ 大數據分析方法與模型有哪些

1、分類分析數據分析法


在數據分析中,如果將數據進行分類就能夠更好的分析。分類分析是將一些未知類別的部分放進我們已經分好類別中的其中某一類;或者將對一些數據進行分析,把這些數據歸納到接近這一程度的類別,並按接近這一程度對觀測對象給出合理的分類。這樣才能夠更好的進行分析數據。


2、對比分析數據分析方法


很多數據分析也是經常使用對比分析數據分析方法。對比分析法通常是把兩個相互有聯系的數據進行比較,從數量上展示和說明研究對象在某一標準的數量進行比較,從中發現其他的差異,以及各種關系是否協調。


3、相關分析數據分析法


相關分析數據分析法也是一種比較常見數據分析方法,相關分析是指研究變數之間相互關系的一類分析方法。按是否區別自變數和因變數為標准一般分為兩類:一類是明確自變數和因變數的關系;另一類是不區分因果關系,只研究變數之間是否相關,相關方向和密切程度的分析方法。


4、綜合分析數據分析法


層次分析法,是一種實用的多目標或多方案的決策方法。由於他在處理復雜的決策問題上的實用性和有效性,而層次分析數據分析法在世界范圍得到廣泛的應用。它的應用已遍及經濟計劃和管理,能源政策和分配,行為科學、軍事指揮、運輸、農業、教育、醫療和環境等多領域。

❺ 大數據分析方法有哪些

1、因子分析方法


所謂因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奧典型抽因法等等。


2、回歸分析方法


回歸分析方法就是指研究一個隨機變數Y對另一個(X)或一組變數的相依關系的統計分析方法。回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析方法運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。


3、相關分析方法


相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系。


4、聚類分析方法


聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,不需要事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。


5、方差分析方法


方差數據方法就是用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。


6、對應分析方法


對應分析是通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。

閱讀全文

與大數據分析方法分類分析相關的資料

熱點內容
什麼方法可以產生你的企業想法 瀏覽:172
折疊躺椅的使用方法 瀏覽:950
山西美食製作方法附圖片 瀏覽:79
扭出紅繩的方法視頻 瀏覽:547
模擬戒指如何製作方法 瀏覽:569
廢機油國標分析方法 瀏覽:424
15歲男生怎樣快速長高的方法 瀏覽:439
績效改進中分析問題的常見方法 瀏覽:726
dna無創檢測方法 瀏覽:628
管理理論基礎的研究方法 瀏覽:401
單相水泵的密封圈安裝方法 瀏覽:301
顯示器好壞的鑒別方法 瀏覽:428
臉上毛孔粗大怎麼解決的土方法 瀏覽:199
企業擴大內部晉升有哪些方法 瀏覽:867
約分的方法有哪些 瀏覽:117
冬季養殖水質檢測方法 瀏覽:260
現代文閱讀加點詞作用方法和技巧 瀏覽:963
復雜實物圖的連接方法 瀏覽:81
如何控制切菜的長度的方法 瀏覽:839
創維電視軟體安裝方法 瀏覽:734