㈠ 怎樣解決相遇問題和追及問題
(一)相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
(二)追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
(1)追擊相遇問題研究方法擴展閱讀:
兩個物體從兩地出發,相向而行,經過一段時間,必然會在途中相遇,這類題型就把它稱為相遇問題。相遇問題是研究速度,時間和路程三者數量之間的關系。
兩個物體從兩地出發,相向而行,經過一段時間,必然會在途中相遇,這類題型就把它稱為相遇問題。相遇問題是研究速度,時間和路程三者數量之間關系的問題。它和一般的行程問題區別在:不是一個物體的運動,所以,它研究的速度包含兩個物體的速度,也就是速度和。
相遇問題的關系式是:速度和×相遇時間=路程;路程÷速度和=相遇時間;路程÷相遇時間=速度和。
【解題思路和方法】簡單的題目可直接利用公式,復雜的題目變通後再利用公式。
㈡ 關於追擊問題和相遇問題的解決方法
兩個物體在同一直線上運動,往往涉及追擊,相遇等問題,解答此類問題的關鍵。
條件是:兩物體能否同時達到空間某位置。
基本思路是:①分別對兩物體進行研究;②畫出運動過程示意圖;③列出位移方程;④找出時間關系,速度關系⑤解出結果,必要時進行討論。
兩物體在同一直線或封閉圖形上運動所涉及的追及、相遇問題,通常歸為追及問題。這類常常會在考試考到。一般分為兩種:一種是雙人追及、雙人相遇,此類問題比較簡單;一種是多人追及、多人相遇,此類則較困難。
(2)追擊相遇問題研究方法擴展閱讀:
解追及問題的常規方法是根據位移相等來列方程,勻變速直線運動位移公式是一個一元二次方程,所以解直線運動問題中常要用到二次三項式(y=ax²+bx+c)的性質和判別式(△=b²-4ac)。
另外,在有兩個(或幾個)物體運動時,常取其中一個物體為參照物,即讓它變為「靜止」的,只有另一個(或另幾個)物體在運動。這樣,研究過程就簡化了,所以追及問題也常變換參照物的方法來解。這時先要確定其他物體相對參照物的初速度和相對它的加速度,才能確定其他物體的運動情況。