『壹』 頻域的頻域分析
頻域(頻率域)——自變數是頻率,即橫軸是頻率,縱軸是該頻率信號的幅度,也就是通常說的頻譜圖。頻譜圖描述了信號的頻率結構及頻率與該頻率信號幅度的關系。
對信號進行時域分析時,有時一些信號的時域參數相同,但並不能說明信號就完全相同。因為信號不僅隨時間變化,還與頻率、相位等信息有關,這就需要進一步分析信號的頻率結構,並在頻率域中對信號進行描述。動態信號從時間域變換到頻率域主要通過傅立葉級數和傅立葉變換實現。周期信號靠傅立葉級數,非周期信號靠傅立葉變換。 一個頻域分析的簡例可以通過圖1:一個簡單線性過程中小孩的玩具來加以說明。該線性系統包含一個用手柄安裝的彈簧來懸掛的重物。小孩通過上下移動手柄來控制重物的位置。
任何玩過這種游戲的人都知道,如果或多或少以一種正弦波的方式來移動手柄,那麼,重物也會以相同的頻率開始振盪,盡管此時重物的振盪與手柄的移動並不同步。只有在彈簧無法充分伸長的情況下,重物與彈簧會同步運動且以相對較低的頻率動作。
隨著頻率愈來愈高,重物振盪的相位可能更加超前於手柄的相位,也可能更加滯後。在過程對象的固有頻率點上,重物振盪的高度將達到最高。過程對象的固有頻率是由重物的質量及彈簧的強度系數來決定的。
當輸入頻率越來越大於過程對象的固有頻率時,重物振盪的幅度將趨於減少,相位將更加滯後(換言之,重物振盪的幅度將越來越少,而其相位滯後將越來越大)。在極高頻的情況下,重物僅僅輕微移動,而與手柄的運動方向恰恰相反。 所有的線性過程對象都表現出類似的特性。這些過程對象均將正弦波的輸入轉換為同頻率的正弦波的輸出,不同的是,輸出與輸入的振幅和相位有所改變。振幅和相位的變化量的大小取決於過程對象的相位滯後與增益大小。增益可以定義為「經由過程對象放大後,輸出正弦波振幅與輸入正弦波振幅之間的比例系數」,而相位滯後可以定義為「輸出正弦波與輸入正弦波相比較,輸出信號滯後的度數」。
與穩態增益K值不同的是,「過程對象的增益和相位滯後」將依據於輸入正弦波信號的頻率而改變。在上例中,彈簧-重物對象不會大幅度的改變低頻正弦波輸入信號的振幅。這就是說,該對象僅有一個低頻增益系數。當信號頻率靠近過程對象的固有頻率時,由於其輸出信號的振幅要大於輸入信號的振幅,因此,其增益系數要大於上述低頻下的系數。而當上例中的玩具被快速搖動時,由於重物幾乎無法起振,因此該過程對象的高頻增益可以認為是零。
過程對象的相位滯後是一個例外的因素。由於當手柄移動得非常慢時,重物與手柄同步振盪,所以,在以上的例子中,相位滯後從接近於零的低頻段輸入信號就開始了。在高頻輸入信號時,相位滯後為「-180度」,也就是重物與手柄以相反的方向運動(因此,我們常常用『滯後180度』來描述這類兩者反向運動的狀況)。
Bode圖譜表現出彈簧-重物對象在0.01-100弧度/秒的頻率范圍內,系統增益與相位滯後的完整頻譜圖。這是Bode圖譜的一個例子,該圖譜是由貝爾實驗室的Hendrick Bode於1940s年代發明的一種圖形化的分析工具。利用該工具可以判斷出,當以某一特定頻率的正弦波輸入信號來驅動過程對象時,其對應的輸出信號的振動幅度和相位。欲獲取輸出信號的振幅,僅僅需要將輸入信號的振幅乘以「Bode圖中該頻率對應的增益系數」。欲獲取輸出信號的相位,僅僅需要將輸入信號的相位加上「Bode圖中該頻率對應的相位滯後值」。
『貳』 如何使用頻譜分析儀
頻譜儀的參數設置背後有其依據,想學習如何使用頻譜儀,得從頻譜儀構造原理了解。簡單介紹一下我們技術團隊總結的檢波器選擇:
設置當前測量的檢波方式,同時將檢波方式應用於當前跡線。可選的檢波器類型包括:正峰值、負峰值、標准、抽樣、有效值平均或電壓平均。
1. 正峰值
對於跡線上的每一個點,正峰值檢波顯示對應時間間隔內的采樣數據中的最大值。
2. 負峰值
對於跡線上的每一個點,負峰值檢波顯示對應時間間隔內的采樣數據中的最小值。
3. 標准檢波
標准檢波(也稱正態檢波或rosenfell檢波)依次選取采樣數據段中的最大值和最小值顯示,即對於跡線上每一個奇數號點,顯示采樣數據的最小值,對於跡線上每一個偶數號點,顯示采樣數據的最大值。使用標准檢波可直觀地觀察信號的幅度變化范圍。
4. 抽樣檢波
對於跡線上的每一個點,抽樣檢波顯示對應時間間隔中心時間點對應的瞬態電平。抽樣檢波適用於雜訊或類似雜訊信號。
5. 有效值平均
對於每一個數據點,檢波器對相應時間間隔內的采樣數據做均方根計算(見公式(2-8)),顯示計算結果。有效值平均檢波可以抑制雜訊,觀察弱信號。
欲知更多,請找我們的公,眾-號。學習:安泰測試