A. 數據收集和分析常用方法
一、頭腦風暴法:
常用於「收集需求」過程中,屬於群體創新技術。聯想是產生新觀念的基本過程。在集體討論問題的過程中,每提出一個新的觀念,都能引發他人的聯想。相繼產生一連串的新觀念,產生連鎖反應,形成新觀念堆,為創造性地解決問題提供了更多的可能性。
在不受任何限制的情況下,集體討論問題能激發人的熱情。人人自由發言、相互影響、相互感染,能形成熱潮,突破固有觀念的束縛,最大限度地發揮創造性地思維能力。
在有競爭意識情況下,人人爭先恐後,競相發言,不斷地開動思維機器,力求有獨到見解,新奇觀念。心理學的原理告訴我們,人類有爭強好勝心理,在有競爭意識的情況下,人的心理活動效率可增加50%或更多。
二、德爾菲技術:
常用於「收集需求」過程中,屬於群體創新技術。這一方法的步驟是:
(1)根據問題的特點,選擇和邀請做過相關研究或有相關經驗的專家。
(2)將與問題有關的信息分別提供給專家,請他們各自獨立發表自己的意見,並寫成書面材料。
(3)管理者收集並綜合專家們的意見後,將綜合意見反饋給各位專家,請他們再次發表意見。如果分歧很大,可以開會集中討論;否則,管理者分頭與專家聯絡。
(4)如此反復多次,最後形成代表專家組意見的方案。
德爾菲法的典型特徵
(1)吸收專家參與預測,充分利用專家的經驗和學識;
(2)採用匿名或背靠背的方式,能使每一位專家獨立自由地作出自己的判斷;
(3)預測過程幾輪反饋,使專家的意見逐漸趨同。
優點:能充分發揮各位專家的作用,集思廣益,准確性高。能把各位專家意見的分歧點表達出來,取各家之長,避各家之短。
缺點:德爾菲法的主要缺點是過程比較復雜,花費時間較長。
三、帕累托圖:
常用於「實施質量控制」過程中。帕累托圖又叫排列圖、主次圖,是按照發生頻率大小順序繪制的直方圖,表示有多少結果是由已確認類型或范疇的原因所造成。它是將出現的質量問題和質量改進項目按照重要程度依次排列而採用的一種圖表。可以用來分析質量問題,確定產生質量問題的主要因素。標准帕累托圖按等級排序的目的是指導如何採取糾正措施:項目班子應首先採取措施糾正造成最多數量缺陷的問題。從概念上說,帕累托圖與帕累托法則一脈相承,該法則認為相對來說數量較少的原因往往造成絕大多數的問題或缺陷。
排列圖用雙直角坐標系表示,左邊縱坐標表示頻數,右邊縱坐標表示頻率.分析線表示累積頻率,橫坐標表示影響質量的各項因素,按影響程度的大小(即出現頻數多少)從左到右排列,通過對排列圖的觀察分析可以抓住影響質量的主要因素.
帕累托法則往往稱為二八原理,即百分之八十的問題是百分之二十的原因所造成的。帕累托圖在項目管理中主要用來找出產生大多數問題的關鍵原因,用來解決大多數問題。
X(經典帕累托圖)
四、控制圖:
常用於「規劃質量、實施質量控制」過程中,就是對生產過程的關鍵質量特性值進行測定、記錄、評估並監測過程是否處於控制狀態的一種圖形方法。根據假設檢驗的原理構造一種圖,用於監測生產過程是否處於控制狀態。它是統計質量管理的一種重要手段和工具。
它是一種有控制界限的圖,用來區分引起的原因是偶然的還是系統的,可以提供系統原因存在的資訊,從而判斷生產過於受控狀態。控制圖按其用途可分為兩類,一類是供分析用的控制圖,用來控制生產過程中有關質量特性值的變化情況,看工序是否處於穩定受控狀;再一類的控制圖,主要用於發現生產過程是否出現了異常情況,以預防產生不合格品。
7點規則:如果遇到連續7點數據落在平均線的同一側。那麼,應當考慮是否存在特殊原因。因為,一個點落在平均線一側的概率是1/2。連續兩點落在同一側的概率是1/2中的1/2=1/4。連續三點落在同一側的概率是1/4中的1/2=1/8。如此下去,連續七點落在同一側的概率是(1/2)X(1/2)X(1/2)X(1/2)X(1/2)X(1/2)X(1/2)=1/128=0.0078。這個概率值是千分之8。這個概率應當講是很小的。當我們在生產抽樣的時候,這樣小的概率是不應當被抽到的。現在被抽到了,說明不正常了,就有可能發生了特殊原因。
五、SWOT分析:
常用於「識別風險」過程中,其中,S代表strength(優勢),W代表weakness(弱勢),O代表opportunity(機會),T代表threat(威脅)。其中,S、W是內部因素,O、T是外部因素。這種分析常用於企業內部分析方法,即根據企業自身的既定內在條件進行分析,找出企業的優勢、劣勢及核心競爭力之所在。
近來,SWOT分析已廣被應用在許多領域上,如學校的自我分析、個人的能力自我分析等方面。比如,在利用SWOT對自己進行職業發展分析時,可以遵循以下五個步驟:
第一步,評估自己的長處和短處每個人都有自己獨特的技能、天賦和能力。在當今分工非常細的環境里,每個人擅長於某一領域,而不是樣樣精通。(當然,除非天才)。舉個例子,有些人不喜歡整天坐在辦公室里,而有些人則一想到不得不與陌生人打交道時,心裡就發麻,惴惴不安。請作個列表,列出你自己喜歡做的事情和你的長處所在。同樣,通過列表,你可以找出自己不是很喜歡做的事情和你的弱勢。找出你的短處與發現你的長處同等重要,因為你可以基於自己的長處和短處上,作兩種選擇;或者努力去改正常的錯誤,提高你的技能,或是放棄那些對你不擅長的技能要求的學系。列出你認為自己所具備的很重要的強項和對你的學習選擇產生影響的弱勢,然後再標出那些你認為對你很重要的強弱勢。
第二步,找出您的職業機會和威脅。我們知道,不同的行業(包括這些行業里不同的公司)都面臨不同的外部機會和威脅,所以,找出這些外界因素將助您成功地找到一份適合自己的工作,對您求職是非常重要的,因為這些機會和威脅會影響您的第一份工作和今後的職業發展。如果公司處於一個常受到外界不利因素影響的行業里,很自然,這個公司能提供的職業機會將是很少的,而且沒有職業升遷的機會。相反,充滿了許多積極的外界因素的行業將為求職者提供廣闊的職業前景。請列出您感興趣的一兩個行業,然後認真地評估這些行業所面臨的機會和威脅。
第三步,提綱式地列出今後3-5年內您的職業目標。仔細地對自己做一個SWOT分析評估,列出您5年內最想實現的四至五個職業目標。這些目標可以包括:您想從事哪一種職業,您將管理多少人,或者您希望自己拿到的薪水屬哪一級別。請時刻記住:您必須竭盡所能地發揮出自己的優勢,使之與行業提供的工作機會完滿匹配。
第四步,提綱式地列出一份今後3-5年的職業行動計劃。這一步主要涉及到一些具體的內容。請您擬出一份實現上述第三步列出的每一目標的行動計劃,並且詳細地說明為了實現每一目標,您要做的每一件事,何時完成這些事。如果您覺得您需要一些外界幫助,請說明您需要何種幫助和您如何獲取這種幫助。例如,您的個人SWOT分析可能表明,為了實現您理想中的職業目標,您需要進修更多的管理課程,那麼,您的職業行動計劃應說明要參加哪些課程、什麼水平的課程以及何時進修這些課程等等。您擬訂的詳盡的行動計劃將幫助您做決策,就像外出旅遊前事先制定的計劃將成為您的行動指南一樣。
第五步,尋求專業幫助。能分析出自己職業發展及行為習慣中的缺點並不難,但要去以合適的方法改變它們卻很難。相信您的朋友、上級主管、職業咨詢專家都可以給您一定的幫助,特別是很多時候藉助專業的咨詢力量會讓您大走捷徑。有外力的協助和監督也會讓您更好的取得效。
六、敏感性分析:
常用於「實施定量風險分析」過程中,敏感性分析的作用是確定影響項目風險的敏感因素。尋找出影響最大、最敏感的主要變數因素,進一步分析、預測或估算其影響程度,找出產生不確定性的根源,採取相應有效措施。敏感性分析有助於確定哪些風險對項目具有最大的潛在影響。它把所有其他不確定因素保持在基準值的條件下,考察項目的每項要素的不確定性對日標產生多大程度的影響。敏感性分析最常用的顯示方式是龍卷風圖。龍卷風圖有助於比較具有較高不確定性的變數與相對穩定的變數之間的相對重要程度。
七、預期貨幣價值:
又稱風險暴露值、風險期望值,是定量風險分析的一種技術,常和決策樹一起使用,它是將特定情況下可能的風險造成的貨幣後果和發生概率相乘,此項目包含了風險和現金的考慮。正值表示機會,負值表示風險。每個可能結果的數值與發生機率相乘後加總即得到。
例:一專案投資100萬,有50%機率會延誤而罰款20萬則EMV值為多少?
答:100+(-20*50%)=90
八、蒙特卡羅法:
用於定量風險分析,是一種採用隨機抽樣(Random Sampling)統計來估算結果的計算方法。項目管理中蒙特卡羅模擬方法的一般步驟是:
1.對每一項活動,輸入最小、最大和最可能估計數據,並為其選擇一種合適的先驗分布模型;
2.計算機根據上述輸入,利用給定的某種規則,快速實施充分大量的隨機抽樣
3.對隨機抽樣的數據進行必要的數學計算,求出結果
4.對求出的結果進行統計學處理,求出最小值、最大值以及數學期望值和單位標准偏差
5.根據求出的統計學處理數據,讓計算機自動生成概率分布曲線和累積概率曲線(通常是基於正態分布的概率累積S曲線)
6.依據累積概率曲線進行項目風險分析。
B. 人力資源管理在工作分析中,搜集信息的方法有哪些
工作分析中搜集信息的方法主要有:資料分析法(利用現有資料如崗位責任制等)、訪談法(與任職者就該項工作進行面對面的談話:關於工作目標,工作內容,所負責任,所需知識與技能等)、觀察法(觀察員工的工作過程、行為、內容、特點、性質等)、問卷調查法(當工作分析牽涉到分布較廣的大量員工時,問卷調查法是最有效率的方法)。
C. 數據收集有哪些方法
數據收集的四種常見的方式包括問卷調查、查閱資料、實地考查、試驗,幾種方法各有各的又是和缺點,具體分析如下。
四是實驗。實驗設計數據是四種方法中最耗時間的一種,因為它是通過各種各樣的實驗來得到一個統一的方向,也就是說,在這個過程中,可能有無數次的失敗。但是實驗得到的數據是最准確的,而且可能會推動某個行業的進步。所以,實驗收集數據的優點是數據的准確性很高,而他的缺點就是未知性很大,不管實驗的周期還是實驗的結果都是不確定性的。
隨著科技的發展和大數據時代的到來,收集數據越來越容易,而大家也應該更注重於保護和利用數據。