導航:首頁 > 研究方法 > 內隱聯想測試數據分析方法

內隱聯想測試數據分析方法

發布時間:2024-01-02 08:23:08

Ⅰ 數據分析的基本方法有哪些

數據分析的三個常用方法
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。

Ⅱ 數據分析師常用的數據分析思路

01 細分分析


細分分析是數據分析的基礎,單一維度下的指標數據信息價值很低。


細分分析法可以大致分為兩類,一類是逐步分析,如:來北京市的訪客可分為朝陽和海淀等區;另一類是維度交叉,如:來自付費SEM的新訪客。


02 對比分析


對比分析主要是把兩個有關聯的數據指標進行相互比較,從數量上說明和展現研究對象的規模大小,水平的高低,速度快慢等方面的相對值,然後通過在一樣的維度下的指標數據對比,可以發現,找出業務在不同階段的問題。


03 漏斗分析


轉化漏斗分析是數據分析師進行業務分析的基本模型,我們最經常見的就是把最終的轉化設置為某種目的的實現,最典型的就是完成交易。但也可以是其他任何目的的實現,比如一次使用app的時間超過10分鍾。


04 同期群分析


同期群(cohort)分析在數據分析運營領域相當重要,尤其是互聯網運營,特別需要仔細觀察留存的情況。通過對性質完全一樣的可對比群體的留存情況的比較,來分析哪些因素影響用戶的留存。


05 聚類分析


聚類分析具有簡單,直觀的特徵,網站分析中的聚類主要分為:用戶,頁面或內容,來源。


用戶聚類主要體現為用戶分群,用戶標簽法;頁面聚類則主要是相似,相關頁面分組法;來源聚類主要包括渠道,關鍵詞等。


06 AB測試


增長黑客的一個主要思想之一,是千萬不要做一個大又全的東西,相反是需要不斷做出能夠快速驗證的小而精的東西。快速驗證,那如何驗證呢?主要方法就是AB測試。


07 埋點分析


只有採集了足夠的基礎數據,才能通過各種分析方法得到需要的分析結果。


通過分析用戶行為,並細分為:瀏覽行為,輕度交互,重度交互,交易行為,對於瀏覽行為和輕度交互行為的點擊按鈕等事件,因其使用頻繁,數據簡單,採用無埋點技術實現自助埋點,即可以提高數據分析的實效性,需要的數據可立即提取,又大量減少技術人員的工作量,需要採集更豐富信息的行為。


08 來源分析


流量紅利消失,我們對獲客來源的重視度極高,如何有效的標注用戶來源,至關重要。


傳統分析工具,渠道分析僅有單一維度,要深入分析不同渠道不同階段效果,SEM付費搜索等來源渠道和用戶所在地區進行交叉分析,得出不同區域的獲客詳細信息,維度越細,分析結果也越有價值。


09 用戶分析


眾所周知,用戶分析是互聯網運營的核心環節,通常用到的分析方法有:活躍分析,留存分析,用戶分群,用戶畫像,用戶細查等。可將用戶活躍細分為瀏覽活躍,互動活躍,交易活躍等,通過活躍行為的細分,掌握關鍵行為指標。


10 表單分析


表單分析中的填寫表單,這個環節是每個平台與用戶交互的必有環節,一份完美的表單設計,對客戶轉化率的提升有至關重要的作用。


用戶進入表單頁面,這時候就已經產生了微漏斗,從進入的總共的人數到最後完成,並且成功提交表單人數,這個過程之中,有多少人開始填寫表單,填寫表單時,遇到了什麼困難導致無法完成表單,都影響最終的轉化效果。


有關數據分析師常用的數據分析思路的內容,青藤小編就和您分享到這里了。如果您對互聯網大數據有著濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於大數據、數據分析師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

閱讀全文

與內隱聯想測試數據分析方法相關的資料

熱點內容
車衣使用方法視頻 瀏覽:433
什麼能止癢最快方法 瀏覽:483
別克英朗防雨條的安裝方法 瀏覽:241
企業會計制度設計常用的方法 瀏覽:211
蘇泊爾凈水器使用方法 瀏覽:462
示波器電流探頭測量方法 瀏覽:342
傳統解剖學教學方法的探索 瀏覽:372
打娃娃什麼方法好 瀏覽:322
簡單木頭鞦韆製作方法 瀏覽:862
研究方法計算實驗方法 瀏覽:670
修復肌膚的方法圖片 瀏覽:332
口腔異味重怎麼治療方法 瀏覽:93
挽回女朋友的步驟和方法 瀏覽:517
oppo下載路徑設置在哪裡設置方法 瀏覽:962
畫竹的方法有哪些 瀏覽:212
金蘋果的食用方法 瀏覽:917
韓國娃娃面膜使用方法 瀏覽:964
新蒙迪歐燈光使用方法 瀏覽:202
音樂的知識與技能教學方法 瀏覽:731
igbt模塊萬用表檢測方法視頻 瀏覽:964