導航:首頁 > 研究方法 > 協方差分析的最佳方法

協方差分析的最佳方法

發布時間:2023-12-29 06:51:44

❶ 16種常用的數據分析方法匯總

一、描述統計

描述性統計是指運用製表和分類,圖形以及計筠概括性數據來描述數據的集中趨勢、離散趨勢、偏度、峰度。

1、缺失值填充:常用方法:剔除法、均值法、最小鄰居法、比率回歸法、決策樹法。

2、正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。

二、假設檢驗

1、參數檢驗

參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗 。

1)U驗  使用條件:當樣本含量n較大時,樣本值符合正態分布

2)T檢驗 使用條件:當樣本含量n較小時,樣本值符合正態分布

A  單樣本t檢驗:推斷該樣本來自的總體均數μ與已知的某一總體均數μ0 (常為理論值或標准值)有無差別;

B  配對樣本t檢驗:當總體均數未知時,且兩個樣本可以配對,同對中的兩者在可能會影響處理效果的各種條件方面扱為相似;

C 兩獨立樣本t檢驗:無法找到在各方面極為相似的兩樣本作配對比較時使用。

2、非參數檢驗

非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。

適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。

A 雖然是連續數據,但總體分布形態未知或者非正態;

B 體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;

主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。

三、信度分析

檢査測量的可信度,例如調查問卷的真實性。

分類:

1、外在信度:不同時間測量時量表的一致性程度,常用方法重測信度

2、內在信度;每個量表是否測量到單一的概念,同時組成兩表的內在體項一致性如何,常用方法分半信度。

四、列聯表分析

用於分析離散變數或定型變數之間是否存在相關。

對於二維表,可進行卡方檢驗,對於三維表,可作Mentel-Hanszel分層分析。

列聯表分析還包括配對計數資料的卡方檢驗、行列均為順序變數的相關檢驗。

五、相關分析

研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。

1、單相關: 兩個因素之間的相關關系叫單相關,即研究時只涉及一個自變數和一個因變數;

2、復相關 :三個或三個以上因素的相關關系叫復相關,即研究時涉及兩個或兩個以上的自變數和因變數相關;

3、偏相關:在某一現象與多種現象相關的場合,當假定其他變數不變時,其中兩個變數之間的相關關系稱為偏相關。

六、方差分析

使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。

分類

1、單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系

2、多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系

3、多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系

4、協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,使之影響了分祈結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法,

七、回歸分析

分類:

1、一元線性回歸分析:只有一個自變數X與因變數Y有關,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布。

2、多元線性回歸分析

使用條件:分析多個自變數與因變數Y的關系,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布 。

1)變呈篩選方式:選擇最優回歸方程的變里篩選法包括全橫型法(CP法)、逐步回歸法,向前引入法和向後剔除法

2)橫型診斷方法:

A 殘差檢驗: 觀測值與估計值的差值要艱從正態分布

B 強影響點判斷:尋找方式一般分為標准誤差法、Mahalanobis距離法

C 共線性診斷:

診斷方式:容忍度、方差擴大因子法(又稱膨脹系數VIF)、特徵根判定法、條件指針CI、方差比例

處理方法:增加樣本容量或選取另外的回歸如主成分回歸、嶺回歸等

3、Logistic回歸分析

線性回歸模型要求因變數是連續的正態分布變里,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況

分類:

Logistic回歸模型有條件與非條件之分,條件Logistic回歸模型和非條件Logistic回歸模型的區別在於參數的估計是否用到了條件概率。

4、其他回歸方法 非線性回歸、有序回歸、Probit回歸、加權回歸等

八、聚類分析

樣本個體或指標變數按其具有的特性進行分類,尋找合理的度量事物相似性的統計量。

1、性質分類:

Q型聚類分析:對樣本進行分類處理,又稱樣本聚類分祈 使用距離系數作為統計量衡量相似度,如歐式距離、極端距離、絕對距離等

R型聚類分析:對指標進行分類處理,又稱指標聚類分析 使用相似系數作為統計量衡量相似度,相關系數、列聯系數等

2、方法分類:

1)系統聚類法: 適用於小樣本的樣本聚類或指標聚類,一般用系統聚類法來聚類指標,又稱分層聚類

2)逐步聚類法 :適用於大樣本的樣本聚類

3)其他聚類法 :兩步聚類、K均值聚類等

九、判別分析

1、判別分析:根據已掌握的一批分類明確的樣品建立判別函數,使產生錯判的事例最少,進而對給定的一個新樣品,判斷它來自哪個總體

2、與聚類分析區別

1)聚類分析可以對樣本逬行分類,也可以對指標進行分類;而判別分析只能對樣本

2)聚類分析事先不知道事物的類別,也不知道分幾類;而判別分析必須事先知道事物的類別,也知道分幾類

3)聚類分析不需要分類的歷史資料,而直接對樣本進行分類;而判別分析需要分類歷史資料去建立判別函數,然後才能對樣本進行分類

3、進行分類 :

1)Fisher判別分析法 :

以距離為判別准則來分類,即樣本與哪個類的距離最短就分到哪一類, 適用於兩類判別;

以概率為判別准則來分類,即樣本屬於哪一類的概率最大就分到哪一類,適用於

適用於多類判別。

2)BAYES判別分析法 :

BAYES判別分析法比FISHER判別分析法更加完善和先進,它不僅能解決多類判別分析,而且分析時考慮了數據的分布狀態,所以一般較多使用;

十、主成分分析

將彼此梠關的一組指標變適轉化為彼此獨立的一組新的指標變數,並用其中較少的幾個新指標變數就能綜合反應原多個指標變數中所包含的主要信息 。

十一、因子分析

一種旨在尋找隱藏在多變數數據中、無法直接觀察到卻影響或支配可測變數的潛在因子、並估計潛在因子對可測變數的影響程度以及潛在因子之間的相關性的一種多元統計分析方法

與主成分分析比較:

相同:都能夠起到済理多個原始變數內在結構關系的作用

不同:主成分分析重在綜合原始變適的信息.而因子分析重在解釋原始變數間的關系,是比主成分分析更深入的一種多元統計方法

用途:

1)減少分析變數個數

2)通過對變數間相關關系探測,將原始變數進行分類

十二、時間序列分析

動態數據處理的統計方法,研究隨機數據序列所遵從的統計規律,以用於解決實際問題;時間序列通常由4種要素組成:趨勢、季節變動、循環波動和不規則波動。

主要方法:移動平均濾波與指數平滑法、ARIMA橫型、量ARIMA橫型、ARIMAX模型、向呈自回歸橫型、ARCH族模型

十三、生存分析

用來研究生存時間的分布規律以及生存時間和相關因索之間關系的一種統計分析方法

1、包含內容:

1)描述生存過程,即研究生存時間的分布規律

2)比較生存過程,即研究兩組或多組生存時間的分布規律,並進行比較

3)分析危險因素,即研究危險因素對生存過程的影響

4)建立數學模型,即將生存時間與相關危險因素的依存關系用一個數學式子表示出來。

2、方法:

1)統計描述:包括求生存時間的分位數、中數生存期、平均數、生存函數的估計、判斷生存時間的圖示法,不對所分析的數據作出任何統計推斷結論

2)非參數檢驗:檢驗分組變數各水平所對應的生存曲線是否一致,對生存時間的分布沒有要求,並且檢驗危險因素對生存時間的影響。

A 乘積極限法(PL法)

B 壽命表法(LT法)

3)半參數橫型回歸分析:在特定的假設之下,建立生存時間隨多個危險因素變化的回歸方程,這種方法的代表是Cox比例風險回歸分析法

4)參數模型回歸分析:已知生存時間服從特定的參數橫型時,擬合相應的參數模型,更准確地分析確定變數之間的變化規律

十四、典型相關分析

相關分析一般分析兩個變里之間的關系,而典型相關分析是分析兩組變里(如3個學術能力指標與5個在校成績表現指標)之間相關性的一種統計分析方法。

典型相關分析的基本思想和主成分分析的基本思想相似,它將一組變數與另一組變數之間單變數的多重線性相關性研究轉化為對少數幾對綜合變數之間的簡單線性相關性的研究,並且這少數幾對變數所包含的線性相關性的信息幾乎覆蓋了原變數組所包含的全部相應信息。

十五、R0C分析

R0C曲線是根據一系列不同的二分類方式(分界值或決定閾).以真陽性率(靈敏度)為縱坐標,假陽性率(1-特異度)為橫坐標繪制的曲線

用途:

1、R0C曲線能很容易地査出任意界限值時的對疾病的識別能力

用途

2、選擇最佳的診斷界限值。R0C曲線越靠近左上角,試驗的准確性就越高;

3、兩種或兩種以上不同診斷試驗對疾病識別能力的比較,一股用R0C曲線下面積反映診斷系統的准確性。

十六、其他分析方法

多重響應分析、距離分祈、項目分祈、對應分祈、決策樹分析、神經網路、系統方程、蒙特卡洛模擬等。

❷ 5種相關分析方法

相關分析(Analysis of Correlation)是網站分析中經常使用的分析方法之一。通過對不同特徵或數據間的關系進行分析,發現業務運營中的關鍵影響及驅動因素。並對業務的發展進行預測。本篇文章將介紹5種常用的分析方法。在開始介紹相關分析之前,需要特別說明的是相關關系不等於因果關系。

相關分析的方法很多,初級的方法可以快速發現數據之間的關系,如正相關,負相關或不相關。中級的方法可以對數據間關系的強弱進行度量,如完全相關,不完全相關等。高級的方法可以將數據間的關系轉化為模型,並通過模型對未來的業務發展進行預測。下面我們以一組廣告的成本數據和曝光量數據對每一種相關分析方法進行介紹。

以下是每日廣告曝光量和費用成本的數據,每一行代表一天中的花費和獲得的廣告曝光數量。憑經驗判斷,這兩組數據間應該存在聯系,但僅通過這兩組數據我們無法證明這種關系真實存在,也無法對這種關系的強度進行度量。因此我們希望通過相關分析來找出這兩組數據之間的關系,並對這種關系進度度量。

1,圖表相關分析(折線圖及散點圖)

第一種相關分析方法是將數據進行可視化處理,簡單的說就是繪制圖表。單純從數據的角度很難發現其中的趨勢和聯系,而將數據點繪製成圖表後趨勢和聯系就會變的清晰起來。對於有明顯時間維度的數據,我們選擇使用折線圖。

為了更清晰的對比這兩組數據的變化和趨勢,我們使用雙坐標軸折線圖,其中主坐標軸用來繪制廣告曝光量數據,次坐標軸用來繪制費用成本的數據。通過折線圖可以發現,費用成本和廣告曝光量兩組數據的變化和趨勢大致相同,從整體的大趨勢來看,費用成本和廣告曝光量兩組數據都呈現增長趨勢。從規律性來看費用成本和廣告曝光量數據每次的最低點都出現在同一天。從細節來看,兩組數據的短期趨勢的變化也基本一致。

經過以上這些對比,我們可以說廣告曝光量和費用成本之間有一些相關關系,但這種方法在整個分析過程和解釋上過於復雜,如果換成復雜一點的數據或者相關度較低的數據就會出現很多問題。

比折線圖更直觀的是散點圖。散點圖去除了時間維度的影響,只關注廣告曝光量和費用成本這里兩組數據間的關系。在繪制散點圖之前,我們將費用成本標識為X,也就是自變數,將廣告曝光量標識為y,也就是因變數。下面是一張根據每一天中廣告曝光量和費用成本數據繪制的散點圖,X軸是自變數費用成本數據,Y軸是因變數廣告曝光量數據。從數據點的分布情況可以發現,自變數x和因變數y有著相同的變化趨勢,當費用成本的增加後,廣告曝光量也隨之增加。

折線圖和散點圖都清晰的表示了廣告曝光量和費用成本兩組數據間的相關關系,優點是對相關關系的展現清晰,缺點是無法對相關關系進行准確的度量,缺乏說服力。並且當數據超過兩組時也無法完成各組數據間的相關分析。若要通過具體數字來度量兩組或兩組以上數據間的相關關系,需要使用第二種方法:協方差。

2,協方差及協方差矩陣

第二種相關分析方法是計算協方差。協方差用來衡量兩個變數的總體誤差,如果兩個變數的變化趨勢一致,協方差就是正值,說明兩個變數正相關。如果兩個變數的變化趨勢相反,協方差就是負值,說明兩個變數負相關。如果兩個變數相互獨立,那麼協方差就是0,說明兩個變數不相關。以下是協方差的計算公式:

下面是廣告曝光量和費用成本間協方差的計算過程和結果,經過計算,我們得到了一個很大的正值,因此可以說明兩組數據間是正相關的。廣告曝光量隨著費用成本的增長而增長。在實際工作中不需要按下面的方法來計算,可以通過Excel中COVAR()函數直接獲得兩組數據的協方差值。

協方差只能對兩組數據進行相關性分析,當有兩組以上數據時就需要使用協方差矩陣。下面是三組數據x,y,z,的協方差矩陣計算公式。

協方差通過數字衡量變數間的相關性,正值表示正相關,負值表示負相關。但無法對相關的密切程度進行度量。當我們面對多個變數時,無法通過協方差來說明那兩組數據的相關性最高。要衡量和對比相關性的密切程度,就需要使用下一個方法:相關系數。,

3,相關系數

第三個相關分析方法是相關系數。相關系數(Correlation coefficient)是反應變數之間關系密切程度的統計指標,相關系數的取值區間在1到-1之間。1表示兩個變數完全線性相關,-1表示兩個變數完全負相關,0表示兩個變數不相關。數據越趨近於0表示相關關系越弱。以下是相關系數的計算公式。

其中rxy表示樣本相關系數,Sxy表示樣本協方差,Sx表示X的樣本標准差,Sy表示y的樣本標准差。下面分別是Sxy協方差和Sx和Sy標准差的計算公式。由於是樣本協方差和樣本標准差,因此分母使用的是n-1。

Sxy樣本協方差計算公式:

Sx樣本標准差計算公式:

Sy樣本標准差計算公式:

下面是計算相關系數的過程,在表中我們分別計算了x,y變數的協方差以及各自的標准差,並求得相關系數值為0.93。0.93大於0說明兩個變數間正相關,同時0.93非常接近於1,說明兩個變數間高度相關。

在實際工作中,不需要上面這么復雜的計算過程,在Excel的數據分析模塊中選擇相關系數功能,設置好x,y變數後可以自動求得相關系數的值。在下面的結果中可以看到,廣告曝光量和費用成本的相關系數與我們手動求的結果一致。

相關系數的優點是可以通過數字對變數的關系進行度量,並且帶有方向性,1表示正相關,-1表示負相關,可以對變數關系的強弱進行度量,越靠近0相關性越弱。缺點是無法利用這種關系對數據進行預測,簡單的說就是沒有對變數間的關系進行提煉和固化,形成模型。要利用變數間的關系進行預測,需要使用到下一種相關分析方法,回歸分析。,

4,一元回歸及多元回歸

第四種相關分析方法是回歸分析。回歸分析(regression analysis)是確定兩組或兩組以上變數間關系的統計方法。回歸分析按照變數的數量分為一元回歸和多元回歸。兩個變數使用一元回歸,兩個以上變數使用多元回歸。進行回歸分析之前有兩個准備工作,第一確定變數的數量。第二確定自變數和因變數。我們的數據中只包含廣告曝光量和費用成本兩個變數,因此使用一元回歸。根據經驗廣告曝光量是隨著費用成本的變化而改變的,因此將費用成本設置為自變數x,廣告曝光量設置為因變數y。

以下是一元回歸方程,其中y表示廣告曝光量,x表示費用成本。b0為方程的截距,b1為斜率,同時也表示了兩個變數間的關系。我們的目標就是b0和b1的值,知道了這兩個值也就知道了變數間的關系。並且可以通過這個關系在已知成本費用的情況下預測廣告曝光量。

這是b1的計算公式,我們通過已知的費用成本x和廣告曝光量y來計算b1的值。

以下是通過最小二乘法計算b1值的具體計算過程和結果,經計算,b1的值為5.84。同時我們也獲得了自變數和因變數的均值。通過這三個值可以計算出b0的值。

以下是b0的計算公式,在已知b1和自變數與因變數均值的情況下,b0的值很容易計算。

將自變數和因變數的均值以及斜率b1代入到公式中,求出一元回歸方程截距b0的值為374。這里b1我們保留兩位小數,取值5.84。

在實際的工作中不需要進行如此繁瑣的計算,Excel可以幫我們自動完成並給出結果。在Excel中使用數據分析中的回歸功能,輸入自變數和因變數的范圍後可以自動獲得b0(Intercept)的值362.15和b1的值5.84。這里的b0和之前手動計算獲得的值有一些差異,因為前面用於計算的b1值只保留了兩位小數。

這里還要單獨說明下R Square的值0.87。這個值叫做判定系數,用來度量回歸方程的擬合優度。這個值越大,說明回歸方程越有意義,自變數對因變數的解釋度越高。

將截距b0和斜率b1代入到一元回歸方程中就獲得了自變數與因變數的關系。費用成本每增加1元,廣告曝光量會增加379.84次。通過這個關系我們可以根據成本預測廣告曝光量數據。也可以根據轉化所需的廣告曝光量來反推投入的費用成本。獲得這個方程還有一個更簡單的方法,就是在Excel中對自變數和因變數生成散點圖,然後選擇添加趨勢線,在添加趨勢線的菜單中選中顯示公式和顯示R平方值即可。

以上介紹的是兩個變數的一元回歸方法,如果有兩個以上的變數使用Excel中的回歸分析,選中相應的自變數和因變數范圍即可。下面是多元回歸方程。

5,信息熵及互信息

最後一種相關分析方法是信息熵與互信息。前面我們一直在圍繞消費成本和廣告曝光量兩組數據展開分析。實際工作中影響最終效果的因素可能有很多,並且不一定都是數值形式。比如我們站在更高的維度來看之前的數據。廣告曝光量只是一個過程指標,最終要分析和關注的是用戶是否購買的狀態。而影響這個結果的因素也不僅僅是消費成本或其他數值化指標。可能是一些特徵值。例如用戶所在的城市,用戶的性別,年齡區間分布,以及是否第一次到訪網站等等。這些都不能通過數字進行度量。

度量這些文本特徵值之間相關關系的方法就是互信息。通過這種方法我們可以發現哪一類特徵與最終的結果關系密切。下面是我們模擬的一些用戶特徵和數據。在這些數據中我們忽略之前的消費成本和廣告曝光量數據,只關注特徵與狀態的關系。

對於信息熵和互信息具體的計算過程請參考我前面的文章《 決策樹分類和預測演算法的原理及實現 》,這里直接給出每個特徵的互信息值以及排名結果。經過計算城市與購買狀態的相關性最高,所在城市為北京的用戶購買率較高。

到此為止5種相關分析方法都已介紹完,每種方法各有特點。其中圖表方法最為直觀,相關系數方法可以看到變數間兩兩的相關性,回歸方程可以對相關關系進行提煉,並生成模型用於預測,互信息可以對文本類特徵間的相關關系進行度量。

❸ 方差和協方差的計算方法什麼

協方差分析是建立在方差分析和回歸分析基礎之上的一種統計分析方法。即ρXY=0的充分必要條件是COV(X,Y)=0,亦即不相關和協方差為零是等價的

cov(x,y)=EXY-EX*EY

協方差的定義,EX為隨機變數X的數學期望,同理,EXY是XY的數學期望,挺麻煩的,建議你看一下概率論cov(x,y)=EXY-EX*EY

方差公式:

❹ 協方差分析

在我們的研究過程中經常會出現除了關注的自變數和因變數,還有一些其他的因素也會影響因變數,但我們又不想考慮他們,這個時候就需要藉助協方差分析了。比如,想研究不同教學方法的作用,那麼自變數是教學方法,因變數是學生的成績,但是我們知道學生最初的水平也對最後的成績有影響,所以為了更好研究教學方法,我們需要採用統計的方法對學生原本的水平進行控制。

因素(自變數):二分或分類變數
協變數:連續的等距或等比數據,且數據無界
因變數:連續的等距或等比數據,且數據無界

結果變數的每個值都應該是獨立的

在每個組內,結果變數應該近似服從正態分布。可用 直方圖 目測,用統計方法: 正態性統計檢驗方法(如K-S統計檢驗)

每個組的方差應該是近似的。統計檢驗: Levene統計量,若不顯著,則齊性

(1)也就是協變數在自變數的不同水平之間是無差異的
(2)SPSS操作:獨立樣本t檢驗(或方差分析)
具體過程與結果見假設4

(1)線性關系可以用散點圖來檢驗

(2) 檢驗各組的回歸系數之間是否有差異。在此需要作 自變數和協變數的交互作用分析 ,且只看自變數和協變數之間的交互作用是否顯著, 如果不顯著表明協變數和因變數之間的關系不會因自變數各處理水平的不同而有所差異,即因變數對協變數的回歸斜率相等 ,滿足協方差分析條件;顯著則不可進行。

在協方差分析中,協變數的作用是用於控制實驗中我們不想關注但卻會對因變數產生影響的變數,而且要求協變數與自變數之間沒有交互作用。
但是值得關注的是,有一種特殊情況,也就是 協變數與自變數之間本身就相關,且協變數是連續變數時, 這種一個情況下, 協變數不再是用於被控制掉的變數,而是也變成自變數來作分析

閱讀全文

與協方差分析的最佳方法相關的資料

熱點內容
竹炭一梳黑使用方法 瀏覽:741
怎樣和老師溝通交流有哪些方法 瀏覽:930
evoh阻氧管的鑒別方法 瀏覽:795
47乘99簡便運算方法 瀏覽:184
磁鐵的簡便方法怎麼做 瀏覽:888
香料怎麼種植方法 瀏覽:364
銀針擦根的方法視頻 瀏覽:406
世界投資分析方法 瀏覽:847
分析多動症最簡單方法 瀏覽:806
練肌肉的最好方法視頻 瀏覽:916
政治題如何學習的答題方法 瀏覽:909
正確吃牛排的方法 瀏覽:661
取法魏晉的最佳方法 瀏覽:524
中華結縷草種植方法 瀏覽:143
財務報表分析橫向分析方法 瀏覽:714
失眠了怎麼辦最簡單的方法ld 瀏覽:655
兒童清潔鼻子的最佳方法 瀏覽:238
硒麥芽如何食用方法 瀏覽:798
腕管綜合征如何鍛煉方法 瀏覽:721
大球的分析方法 瀏覽:233