『壹』 高頻非線性電路幾種常見的分析方法中,普遍適用的什麼法
方程分析法
『貳』 分析線性電路與非線性電路的方法
這三種方法都是基於KCL、KVL及VAR,適用於集總參數電路,無線性非線性無關,都適用!
『叄』 非線性系統理論的主要分析方法
對於非線性系統尚未建立起象線性系統的分析那樣成熟和系統的一套方法,在應用上比較有效的主要方法有四種。
等效線性化方法 主要用於分析非線性程度較低的非線性系統。其實質是把非線性問題近似地加以線性化,然後去解決已線性化的問題。描述函數法、分段線性化法、小參數法等都屬於這種方法。
直接分析方法 建立在直接處理系統的實際的或簡化後的非線性微分方程基礎上的分析方法,不管非線性程度的高低都可適用。相平面法、李雅普諾夫第二方法(見李雅普諾夫穩定性理論)等都屬於這種方法。
雙線性系統理論 對於雙線性系統這一特殊類型非線性系統建立的分析和綜合方法。
流形上的控制理論 這一理論的發展始於70年代初期,它是以微分幾何為主要數學工具的一種分析方法。流形上的控制理論為非線性系統的研究提供了一條新的途徑,可用以研究非線性系統的某些全局和局部性質。