導航:首頁 > 研究方法 > 數據挖掘分類方法研究

數據挖掘分類方法研究

發布時間:2023-12-02 06:10:11

A. 數據挖掘的方法有哪些

神經網路方法


神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。


遺傳演算法


遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。


決策樹方法


決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。


粗集方法


粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。


覆蓋正例排斥反例方法


它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。


統計分析方法


在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。


模糊集方法


即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。


關於數據挖掘的方法有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

B. 大數據挖掘方法有哪些

謝邀。

大數據挖掘的方法:

神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。


遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。


決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。


粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。


它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。


在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。


即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。

C. 數據挖掘的常用方法有哪些

1、決策樹法

決策樹在解決歸類與預測上有著極強的能力,它以法則的方式表達,而這些法則則以一連串的問題表示出來,經由不斷詢問問題最終能導出所需的結果。典型的決策樹頂端是一個樹根,底部有許多的樹葉,它將紀錄分解成不同的子集,每個子集中的欄位可能都包含一個簡單的法則。此外,決策樹可能有著不同的外型,例如二元樹、三元樹或混和的決策樹型態。


2、神經網路法


神經網路法是模擬生物神經系統的結構和功能,是一種通過訓練來學習的非線性預測模型,它將每一個連接看作一個處理單元,試圖模擬人腦神經元的功能,可完成分類、聚類、特徵挖掘等多種數據挖掘任務。神經網路的學習方法主要表現在權值的修改上。其優點是具有抗干擾、非線性學習、聯想記憶功能,對復雜情況能得到精確的預測結果;缺點首先是不適合處理高維變數,不能觀察中間的學習過程,具有“黑箱”性,輸出結果也難以解釋;其次是需較長的學習時間。神經網路法主要應用於數據挖掘的聚類技術中。


3、關聯規則法


關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。


4、遺傳演算法


遺傳演算法模擬了自然選擇和遺傳中發生的繁殖、交配和基因突變現象,是一種採用遺傳結合、遺傳交叉變異及自然選擇等操作來生成實現規則的、基於進化理論的機器學習方法。它的基本觀點是“適者生存”原理,具有隱含並行性、易於和其他模型結合等性質。主要的優點是可以處理許多數據類型,同時可以並行處理各種數據;缺點是需要的參數太多,編碼困難,一般計算量比較大。遺傳演算法常用於優化神經元網路,能夠解決其他技術難以解決的問題。


5、聚類分析法


聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。根據定義可以把其分為四類:基於層次的聚類方法;分區聚類演算法;基於密度的聚類演算法;網格的聚類演算法。常用的經典聚類方法有K-mean,K-medoids,ISODATA等。


6、模糊集法


模糊集法是利用模糊集合理論對問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。模糊集合理論是用隸屬度來描述模糊事物的屬性。系統的復雜性越高,模糊性就越強。


7、web頁挖掘


通過對Web的挖掘,可以利用Web的海量數據進行分析,收集政治、經濟、政策、科技、金融、各種市場、競爭對手、供求信息、客戶等有關的信息,集中精力分析和處理那些對企業有重大或潛在重大影響的外部環境信息和內部經營信息,並根據分析結果找出企業管理過程中出現的各種問題和可能引起危機的先兆,對這些信息進行分析和處理,以便識別、分析、評價和管理危機。


8、邏輯回歸分析


反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。


9、粗糙集法


是一種新的處理含糊、不精確、不完備問題的數學工具,可以處理數據約簡、數據相關性發現、數據意義的評估等問題。其優點是演算法簡單,在其處理過程中可以不需要關於數據的先驗知識,可以自動找出問題的內在規律;缺點是難以直接處理連續的屬性,須先進行屬性的離散化。因此,連續屬性的離散化問題是制約粗糙集理論實用化的難點。


10、連接分析


它是以關系為主體,由人與人、物與物或是人與物的關系發展出相當多的應用。例如電信服務業可藉連結分析收集到顧客使用電話的時間與頻率,進而推斷顧客使用偏好為何,提出有利於公司的方案。除了電信業之外,愈來愈多的營銷業者亦利用連結分析做有利於企業的研究。

閱讀全文

與數據挖掘分類方法研究相關的資料

熱點內容
恆聯豆漿機拆掉安裝方法 瀏覽:936
創傷止血常用止血方法視頻 瀏覽:512
券商復盤方法和技巧 瀏覽:244
如何在高一學會數學方法 瀏覽:569
懷孕胖怎麼減肥方法 瀏覽:421
炸制豬耳朵片的製作方法視頻 瀏覽:406
治療頸椎病最快的方法一周瘦10斤 瀏覽:75
小米6的雲空間在哪裡設置方法 瀏覽:74
什麼方法可以聯繫到插件的作者 瀏覽:676
如何恢復快充方法 瀏覽:114
導航連接車載的方法 瀏覽:386
重復接地最佳方法 瀏覽:282
女性快樂器使用方法 瀏覽:294
研究媒介文化的方法 瀏覽:962
矩法度量常用的方法 瀏覽:221
小米六飛行模式在哪裡設置方法 瀏覽:115
如何在學校減肥的最好方法 瀏覽:89
電動車轉把三速正確接線方法 瀏覽:814
快速減肥用什麼方法 瀏覽:475
電子表格如何快速居中靠左方法 瀏覽:925